952 resultados para infrared spectroscopy, phosphate, Raman spectroscopy, triplite, triploidite, zwieselite


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Competitive adsorption is the usual situation in real applications, and it is of critical importance in determining the overall performance of an adsorbent. In this study, the competitive adsorption characteristics of all the combinations of binary mixtures of aqueous metal ion species Ca2+(aq), Cd2+(aq), Pb2+(aq), and Hg2+(aq) on a functionalized activated carbon were investigated. The porous structure of the functionalized active carbon was characterized using N-2 (77 K) and CO2 (273 K) adsorption. The surface group characteristics were examined by temperature-programmed desorption, Fourier transform infrared spectroscopy, Raman spectroscopy, acid/base titrations, and measurement of the point of zero charge (pH(PZC)). The adsorption of aqueous metal ion species M2+(aq), on acidic oxygen functional group sites mainly involves an ion exchange mechanism. The ratios of protons displaced to the amount of M2+(aq) metal species adsorbed have a linear relationship for both single-ion and binary mixtures of these species. Hydrolysis of metal species in solution may affect the adsorption, and this is the case for adsorption of Hg2+(aq) and Pb2+(aq). Competitive adsorption decreases the amounts of individual metal ions adsorbed, but the maximum amounts adsorbed still follow the order Hg2+(aq) > Pb2+(aq) > Cd2+(aq) > Ca2+(aq) obtained for single metal ion adsorption. The adsorption isotherms for single metal ion species were used to develop a model for competitive adsorption in binary mixtures, involving exchange of ions in solution with surface proton sites and adsorbed metal ions, with the species having different accessibilities to the porous structure. The model was validated against the experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have excited mid-infrared surface plasmons in two YBCO thin films of contrasting properties using attenuated total reflection of light and found that the imaginary part of the dielectric function decreases linearly with reduction in temperature. This result is in contrast with the commonly reported conclusion of infrared normal reflectance studies. If sustained it may clarify the problem of understanding the normal state properties of YBCO and the other cuprates. The dielectric function of the films, epsilon = epsilon(1) + i epsilon(2), was determined between room temperature and 80K: epsilon(1) was found to be only slightly temperature dependent but somewhat sample dependent, probably as a result of surface and grain boundary contamination. The imaginary part, epsilon(2), (and the real part of the conductivity, sigma(1),) decreased linearly with reduction in temperature in both films. Results obtained were: for film 1: epsilon(1) = - 14.05 - 0.0024T and epsilon(2) - 4.11 + 0.086T and for film 2: epsilon(1) = - 24.09 + 0.0013T and epsilon(2) = 7.66 + 0.067T where T is the temperature in Kelvin. An understanding of the results is offered in terms of temperature-dependent intrinsic intragrain inelastic scattering and temperature-independent contributions: elastic and inelastic grain boundary scattering and optical interband (or localised charge) absorption. The relative contribution of each is estimated. A key conclusion is that the interband (or localised charge) absorption is only similar to 10%. Most importantly, the intrinsic scattering rate, 1/tau, decreases linearly with fall in temperature, T, in a regime where current theory predicts dependence on frequency, omega, to dominate. The coupling constant, lambda, between the charge carriers and the thermal excitations has a value of 1.7, some fivefold greater than the far infrared value. These results imply a need to restate the phenomenology of the normal state of high temperature superconductors and seek a corresponding theoretical understanding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objectivo desta tese é a utilização de materiais híbridos orgânicos-inorgânicos, designados por di-ureiasis modificados pela adição de tetra-propóxido de zircónio (Zr(i-OPr)4) estabilizado com ácido metacrílico (CH2=C(CH3)COOH), obtidos pela via sol-gel, para aplicações em dispositivos ópticos integrados de baixo custo. A estrutura local dos di-ureiasis com diferentes concentrações de propóxido de zircónio (20 a 80 % mol) foi estudada por difracção de raios-X, espalhamento de raios X a baixos ângulos, microscopia de força atómica, ressonância magnética nuclear dos núcleos dos átomos de 29Si e 13C, espectroscopia no infravermelho por transformada de Fourier, espectroscopia de Raman por transformada de Fourier e termogravimetria. A influência dos parâmetros de síntese, concentração de tetra propóxido de zircónio e rácio tetra propóxido de zircónio: ácido metacrilico na estrutura e propriedades das amostras em monólito e filmes finos (depositados pela técnica de deposição por rotação do substrato) foram avaliadas, permitindo obter amostras transparentes, fotopolimerizáveis e estáveis termicamente até aos 100 ºC. Foram determinadas as propriedades dos guias planares em substratos de vidro borosilicato e silício oxidado (1

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O trabalho descrito compreende o desenvolvimento de um anticorpo plástico (MIP, do inglês Molecularly Imprinted Polymer) para o antigénio carcinoembrionário (CEA, do inglês Carcinoembriogenic Antigen) e a sua aplicação na construção de dispositivos portáteis, de tamanho reduzido e de baixo custo, tendo em vista a monitorização deste biomarcador do cancro do colo-retal em contexto Point-of-Care (POC). O anticorpo plástico foi obtido por tecnologia de impressão molecular orientada, baseada em eletropolimerização sobre uma superfície condutora de vidro recoberto por FTO. De uma forma geral, o processo foi iniciado pela electropolimerização de anilina sobre o vidro, seguindo-se a ligação por adsorção do biomarcador (CEA) ao filme de polianilina, com ou sem monómeros carregados positivamente (Cloreto de vinilbenziltrimetilamónio, VB). A última fase consistiu na electropolimerização de o-fenilenodiamina (oPD) sobre a superfície, seguindo-se a remoção da proteína por clivagem de ligações peptídicas, com o auxílio de tripsina. A eficiência da impressão do biomarcador CEA no material polimérico foi controlada pela preparação de um material análogo, NIP (do inglês, Non-Imprinted Polymer), no qual nem a proteína nem o monómero VB estavam presentes. Os materiais obtidos foram caracterizados quimicamente por técnicas de Infravermelho com Transformada de Fourier (FTIR, do inglês, Fourier Transform Infrared Spectroscopy) e microscopia confocal de Raman. Os materiais sensores preparados foram entretanto incluídos em membranas poliméricas de Poli(cloreto de vinilo) (PVC) plastificado, para construção de sensores (biomiméticos) seletivos a CEA, tendo-se avaliado a resposta analítica em diferentes meios. Obteve-se uma boa resposta potenciométrica em solução tampão de Ácido 4-(2-hidroxietil)piperazina-1-etanosulfónico (HEPES), a pH 4,4, com uma membrana seletiva baseada em MIP preparada com o monómero carregado VB. O limite de deteção foi menor do que 42 pg/mL, observando-se um comportamento linear (versus o logaritmo da concentração) até 625 pg/mL, com um declive aniónico igual a -61,9 mV/década e r2>0,9974. O comportamento analítico dos sensores biomiméticos foi ainda avaliado em urina, tendo em vista a sua aplicação na análise de CEA em urina. Neste caso, o limite de deteção foi menor do que 38 pg/mL, para uma resposta linear até 625 pg/mL, com um declive de -38,4 mV/década e r2> 0,991. De uma forma geral, a aplicação experimental dos sensores biomiméticos evidenciou respostas exatas, sugerindo que os biossensores desenvolvidos prossigam estudos adicionais tendo em vista a sua aplicação em amostras de indivíduos doentes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho descreve o desenvolvimento de um material sensor para creatinina por impressão molecular em estrutura polimérica (MIP) e a sua aplicação no desenvolvimento de um dispositivo de natureza potenciométrica para a determinação da molécula alvo em fluidos biológicos. A creatinina é um dos biomarcadores mais utilizados no acompanhamento da doença renal, já que é um bom indicador da taxa de filtração glomerular (TFG). Os materiais biomiméticos desenhados para interação com a creatinina foram obtidos por polimerização radicalar, recorrendo a monómeros de ácido metacríclico ou de vinilpiridina e a um agente de reticulação apropriado. De modo a aferir o efeito da impressão da creatinina na resposta dos materiais MIP à sua presença, foram também preparados e avaliados materiais de controlo, obtidos sem impressão molecular (NIP). O controlo da constituição química destes materiais, incluindo a extração da molécula impressa, foi realizado por Espectroscopia de Raman e de Infravermelho com Transformada de Fourrier. A afinidade de ligação entre estes materiais e a creatinina foi também avaliada com base em estudos cinéticos. Todos os materiais descritos foram integrados em membranas selectivas de elétrodos seletivos de ião, preparadas sem ou com aditivo iónico lipófilo, de carga negativa ou positiva. A avaliação das características gerais de funcionamento destes elétrodos, em meios de composição e pH diferentes, indicaram que as membranas com materiais impressos e aditivo aniónico eram as únicas com utilidade analítica. Os melhores resultados foram obtidos em solução tampão Piperazine-N,N′-bis(2- ethanesulfonic acid), PIPES, de pH 2,8, condição que permitiu obter uma resposta quasi-Nernstiana, a partir de 1,6×10-5 mol L-1. Estes elétrodos demonstraram ainda uma boa selectividade ao apresentaram uma resposta preferencial para a creatinina quando na presença de ureia, carnitina, glucose, ácido ascórbico, albumina, cloreto de cálcio, cloreto de potássio, cloreto de sódio e sulfato de magnésio. Os elétrodos foram ainda aplicados com sucesso na análise de amostras sintéticas de urina, quando os materiais sensores eram baseados em ácido metacrilico, e soro, quando os materiais sensores utilizados eram baseados em vinilpiridina.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temperature dependent resistivity, p, magnetic susceptibility, X, and far-infrared reflectance measurements were made on the low Tc superconductor UBe13. Two variants of UBe13 have been proposed, named 'L'- (for low Tc ) and 'H'-type (for high Tc ). Low temperature resistivity measurements confirmed that our sample was of H-type and that the transition temperature was at 0.9 K. This was further confirmed with the observation of this transition in the AC-susceptibility. Low temperature reflectance measurements showed a decrease in the reflectivity as the temperature is lowered from 300 to 10 K, which is in qualitative agreement with the increasing resistivity in this temperature range as temperature is lowered. No dramatic change in the reflectivity was observed between 10 and 0.75 K. A further decrease of the reflectance was observed for the temperature of 0.5 K. The calculated optical conductivity shows a broad minimum near 80 cm-1 below 45 K. Above 45 K the conductivity is relatively featureless. As the temperature is lowered, the optical conductivity decreases. The frequency dependent scattering rate was found to be flat for temperatures between 300 and 45 K. The development of a peak, at around 70 cm-1 was found for temperatures of 45 K and below. This peak has been associated with the energy at which the transition to a coherent state occurs from single impurity scattering in other heavy fermion systems. The frequency dependent mass enhancement coefficient was found to increase at low frequencies as the frequency decreases. Its' magnitude as frequency approaches zero also increased as the temperature decreased.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we show that the orthorhombic phase of FeSi2 (stable at room temperature) displays a sizable anisotropy in the infrared spectra, with minor effects in the Raman data too. This fact is not trivial at all, since the crystal structure corresponds to a moderate distortion of the fluorite symmetry. Our analysis is carried out on small single crystals grown by flux transport, through polarization-resolved far-infrared reflectivity and Raman measurements. Their interpretation has been obtained by means of the simulated spectra with tight-binding molecular dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FT-IR spectrum of quinoline-2-carbaldehyde benzoyl hydrazone (HQb H2O) was recorded and analyzed. The synthesis and crystal structure data are also described. The vibrational wavenumbers were examined theoretically using the Gaussian03 package of programs using HF/6-31G(d) and B3LYP/6-31G(d) levels of theory. The data obtained from vibrational wavenumber calculations are used to assign vibrational bands obtained in infrared spectroscopy of the studied molecule. The first hyperpolarizability, infrared intensities and Raman activities are reported. The calculated first hyperpolarizability is comparable with the reported values of similar derivatives and is an attractive object for future studies of non-linear optics. The geometrical parameters of the title compound obtained from XRD studies are in agreement with the calculated values. The changes in the CAN bond lengths suggest an extended p-electron delocalization over quinoline and hydrazone moieties which is responsible for the non-linearity of the molecule

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marine Aspergillus awamori BTMFW032, recently reported by us, produce acidophilic tannase as extracellular enzyme. Here, we report the application of this enzyme for synthesis of propyl gallate by direct transesterification of tannic acid and in tea cream solubilisation besides the simultaneous production of gallic acid along with tannase under submerged fermentation by this fungus. This acidophilic tannase enabled synthesis of propyl gallate by direct transesterification of tannic acid using propanol as organic reaction media under low water conditions. The identity of the product was confirmed with thin layer chromatography and Fourier transform infrared spectroscopy. It was noted that 699 U/ml of enzyme could give 60% solubilisation of tea cream within 1 h. Enzyme production medium was optimized adopting Box–Behnken design for simultaneous synthesis of tannase and gallic acid. Process variables including tannic acid, sodium chloride, ferrous sulphate, dipotassium hydrogen phosphate, incubation period and agitation were recognized as the critical factors that influenced tannase and gallic acid production. The model obtained predicted 4,824.61 U/ml of tannase and 136.206 μg/ml gallic acid after 48 h of incubation, whereas optimized medium supported 5,085 U/ml tannase and 372.6 μg/ml of gallic acid production after 36 and 84 h of incubation, respectively, with a 15-fold increase in both enzyme and gallic acid production. Results indicated scope for utilization of this acidophilic tannase for transesterification of tannic acid into propyl gallate, tea cream solubilisation and simultaneous production of gallic acid along with tannase

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene has captured the attention of scientific community due to recently emerging high performance applications. Hence, studying its reinforcing effects on epoxy resin is a significant step. In this study, microwave exfoliated reduced graphene oxide (MERGO) was prepared from natural graphite for subsequent fabrication of epoxy nanocomposites using triethylenetetramine (TETA) as a curing agent via insitu polymerization. Thermogravimetric analysis (TGA), X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), C13 NMR spectroscopy, X-ray photoelectron spectroscopy (XPS) and ultravioletevisible (UVevis) spectroscopy were employed to confirm the simultaneous reduction and exfoliation of graphene oxide. The reinforcing effect of MERGO on epoxy resin was explored by investigating its static mechanical properties and dynamic mechanical analysis (DMA) at MERGO loadings of 0 to 0.5 phr. The micro-structure of epoxy/MERGO nanocomposites was investigated using scanning electron microscope (SEM), transmission electron microscope (TEM) and XRD techniques. The present work reports an enhancement of 32%, 103% and 85% in tensile, impact and flexural strength respectively of epoxy by the addition of even 0.25 phr MERGO. At this loading elastic and flexural moduli also increased by 10% and 65%, respectively. Single-edge-notch three-point-Bending (SEN-TPB) fracture toughness (KIC) measurements were carried out where a 63% increase was observed by the introduction of 0.25 phr MERGO. The interfacial interactions brought about by graphene also benefited the dynamic mechanical properties to a large extent in the form of a significant enhancement in storage modulus and slightly improved glass transition temperature. Considerable improvements were also detected in dielectric properties. The epoxy nanocomposite also attained an ac conductivity of 10 5 S/m and a remarkable increase in dielectric constant. The simple and cost effective way of graphene synthesis for the fabrication of epoxy/MERGO nanocomposites may be extended to the preparation of other MERGO based polymer nanocomposites. This remarkable class of materials has thrown open enormous opportunities for developing conductive adhesives and in microelectronics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The surface properties of probiotic bacteria influence to a large extent their interactions within the gut ecosystem. There is limited amount of information on the effect of the production process on the surface properties of probiotic lactobacilli in relation to the mechanisms of their adhesion to the gastrointestinal mucosa. The aim of this work was to investigate the effect of the fermentation pH and temperature on the surface properties and adhesion ability to Caco-2 cells of the probiotic strain Lactobacillus rhamnosus GG. Results: The cells were grown at pH 5, 5.5, 6 (temperature 37 °C) and at pH 6.5 (temperature 25 °C, 30 °C and 37 °C), and their surfaces analysed by X-ray photoelectron spectrometry (XPS), Fourier transform infrared spectroscopy (FT-IR) and gel-based proteomics. The results indicated that for all the fermentation conditions, with the exception of pH 5, a higher nitrogen to carbon ratio and a lower phosphate content was observed at the surface of the bacteria, which resulted in a lower surface hydrophobicity and reduced adhesion levels to Caco-2 cells as compared to the control fermentation (pH 6.5, 37 oC). A number of adhesive proteins, which have been suggested in previous published works to take part in the adhesion of bacteria to the human gastrointestinal tract, were identified by proteomic analysis, with no significant differences between samples however. Conclusions: The temperature and the pH of the fermentation influenced the surface composition, hydrophobicity and the levels of adhesion of L. rhamnosus GG to Caco-2 cells. It was deduced from the data that a protein rich surface reduced the adhesion ability of the cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fire investigation is a challenging area for the forensic investigator. The aim of this work was to use spectral changes to paint samples to estimate the temperatures to which a paint has been heated. Five paint samples (one clay paint, two car paints, one metallic paint, and one matt emulsion) have been fully characterized by a combination of attenuated total reflectance Fourier transform infrared (ATR-IR), Raman, X-ray fluorescence spectroscopy and powder X-ray diffraction. The thermal decomposition of these paints has been investigated by means of ATR-IR and thermal gravimetric analysis. Clear temperature markers are observed in the ATR-IR spectra namely: loss of m(C = O) band, >300°C; appearance of water bands on cooling, >500°C; alterations to m(Si–O) bands due to dehydration of silicate clays, >700°C; diminution of m(CO3) and d(CO3) modes of CaCO3, >950°C. We suggest the possible use of portable ATR-IR for nondestructive, in situ analysis of paints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

p-(Dimethylamino)phenyl pentazole, DMAP-N5 (DMAP = Me2N−C6H4), was characterized by picosecond transient infrared spectroscopy and infrared spectroelectrochemistry. Femtosecond laser excitation at 310 or 330 nm produces the DMAP-N5 (S1) excited state, part of which returns to the ground state (τ = 82 ± 4 ps), while DMAP-N and DMAP-N3 (S0) are generated as double and single N2-loss photoproducts with η ≈ 0.14. The lifetime of DMAP-N5 (S1) is temperature and solvent dependent. [DMAP-N3]+ is produced from DMAP-N5 in a quasireversible, one-electron oxidation process (E1/2 = +0.67 V). Control experiments with DMAP-N3 support the findings. DFT B3LYP/6-311G** calculations were used to identify DMAP-N5 (S1), DMAP-N3 +, and DMAP-N in the infrared spectra. Both DMAP-N5 (S1) and [DMAP-N5]+ have a weakened N5 ring structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of narrow bandpass filters to discriminate wavelengths between closely-separated gas absorption lines is crucial in many areas of infrared spectroscopy. As improvements to the sensitivity of infrared detectors enables operation in uncontrolled high-temperature environments, this imposes demands on the explicit bandpass design to provide temperature-invariant behavior. The unique negative temperature coefficient (dn/dT<0) of Lead-based (Pb) salts, in combination with dielectric materials enable bandpass filters with exclusive immunity to shifts in wavelength with temperature. This paper presents the results of an investigation into the interdependence between multilayer bandpass design and optical materials together with a review on invariance at elevated temperatures.