800 resultados para information bottleneck method
Resumo:
Although tumor budding is linked to adverse prognosis in colorectal cancer, it remains largely unreported in daily diagnostic work due to the absence of a standardized scoring method. Our aim was to assess the inter-observer agreement of a novel 10-high-power-fields method for assessment of tumor budding at the invasive front and to confirm the prognostic value of tumor budding in our setting of colorectal cancers. Whole tissue sections of 215 colorectal cancers with full clinico-pathological and follow-up information were stained with cytokeratin AE1/AE3 antibody. Presence of buds was scored across 10-high-power fields at the invasive front by two pathologists and two additional observers were asked to score 50 cases of tumor budding randomly selected from the larger cohort. The measurements were correlated to the patient and tumor characteristics. Inter-observer agreement and correlation between observers' scores were excellent (P<0.0001; intraclass correlation coefficient=0.96). A test subgroup of 65 patients (30%) was used to define a valid cutoff score for high-grade tumor budding and the remaining 70% of the patients were entered into the analysis. High-grade budding was defined as an average of ≥10 buds across 10-high-power fields. High-grade budding was associated with a higher tumor grade (P<0.0001), higher TNM stage (P=0.0003), vascular invasion (P<0.0001), infiltrating tumor border configuration (P<0.0001) and reduced survival (P<0.0001). Multivariate analysis confirmed its independent prognostic effect (P=0.007) when adjusting for TNM stage and adjuvant therapy. Using 10-high-power fields for evaluating tumor budding has independent prognostic value and shows excellent inter-observer agreement. Like the BRE and Gleason scores in breast and prostate cancers, respectively, tumor budding could be a basis for a prognostic score in colorectal cancer.
Resumo:
A confocal imaging and image processing scheme is introduced to visualize and evaluate the spatial distribution of spectral information in tissue. The image data are recorded using a confocal laser-scanning microscope equipped with a detection unit that provides high spectral resolution. The processing scheme is based on spectral data, is less error-prone than intensity-based visualization and evaluation methods, and provides quantitative information on the composition of the sample. The method is tested and validated in the context of the development of dermal drug delivery systems, introducing a quantitative uptake indicator to compare the performances of different delivery systems is introduced. A drug penetration study was performed in vitro. The results show that the method is able to detect, visualize and measure spectral information in tissue. In the penetration study, uptake efficiencies of different experiment setups could be discriminated and quantitatively described. The developed uptake indicator is a step towards a quantitative assessment and, in a more general view apart from pharmaceutical research, provides valuable information on tissue composition. It can potentially be used for clinical in vitro and in vivo applications.
Resumo:
A novel microfluidic method is proposed for studying diffusion of small molecules in a hydrogel. Microfluidic devices were prepared with semi-permeable microchannels defined by crosslinked poly(ethylene glycol) (PEG). Uptake of dye molecules from aqueous solutions flowing through the microchannels was observedoptically and diffusion of the dye into the hydrogel was quantified. To complement the diffusion measurements from the microfluidic studies, nuclear magnetic resonance(NMR) characterization of the diffusion of dye in the PEG hydrogels was performed. The diffusion of small molecules in a hydrogel is relevant to applications such asdrug delivery and modeling transport for tissue-engineering applications. The diffusion of small molecules in a hydrogel is dependent on the extent of crosslinking within the gel, gel structure, and interactions between the diffusive species and the hydrogel network. These effects were studied in a model environment (semi-infinite slab) at the hydrogelfluid boundary in a microfluidic device. The microfluidic devices containing PEG microchannels were fabricated using photolithography. The unsteady diffusion of small molecules (dyes) within the microfluidic device was monitored and recorded using a digital microscope. The information was analyzed with techniques drawn from digital microscopy and image analysis to obtain concentration profiles with time. Using a diffusion model to fit this concentration vs. position data, a diffusion coefficient was obtained. This diffusion coefficient was compared to those from complementary NMR analysis. A pulsed field gradient (PFG) method was used to investigate and quantify small molecule diffusion in gradient (PFG) method was used to investigate and quantify small molecule diffusion in hydrogels. There is good agreement between the diffusion coefficients obtained from the microfluidic methods and those found from the NMR studies. The microfluidic approachused in this research enables the study of diffusion at length scales that approach those of vasculature, facilitating models for studying drug elution from hydrogels in blood-contacting applications.
Resumo:
From conventional radiography to cross-sectional imaging methods, modern radiology offers a wide range of diagnostic tools for investigating patients with fever. To achieve the best results and to yield a correct diagnosis, the radiologist must tailor the diagnostic protocol individually for every patient. The decision on the most suitable imaging method, and the type and timing of contrast media strongly depends on the suspected diagnosis. Based on patient history and laboratory data, some modalities may be contraindicated or the patient may need a premedication. The authors give a short overview of diagnostic strategies in evaluating the most important causes of fever and point to the need of discussion and co-operation between clinicians and radiologists.
Resumo:
Of the several uterine compression sutures described in more recent years to treat postpartum haemorrhage (PPH), the Hayman suture offers the potential advantages that can be applied faster and easier, avoiding the performance of a lower segment hysterotomy when PPH follows a vaginal delivery. Data on efficacy and safety are limited, and long-term follow-up information are lacking. We report our experience with the Hayman suture in 11 consecutive women with massive PPH. Of these, ten were successfully treated without further interventions. One woman ultimately required a hysterectomy. Postoperative course was uncomplicated in all the cases. The median follow-up time was 11 months (range 1-19). One woman conceived spontaneously 10 months after the procedure. Our results suggest that the Hayman suture is an effective and safe treatment for PPH.
Resumo:
The penetration, translocation, and distribution of ultrafine and nanoparticles in tissues and cells are challenging issues in aerosol research. This article describes a set of novel quantitative microscopic methods for evaluating particle distributions within sectional images of tissues and cells by addressing the following questions: (1) is the observed distribution of particles between spatial compartments random? (2) Which compartments are preferentially targeted by particles? and (3) Does the observed particle distribution shift between different experimental groups? Each of these questions can be addressed by testing an appropriate null hypothesis. The methods all require observed particle distributions to be estimated by counting the number of particles associated with each defined compartment. For studying preferential labeling of compartments, the size of each of the compartments must also be estimated by counting the number of points of a randomly superimposed test grid that hit the different compartments. The latter provides information about the particle distribution that would be expected if the particles were randomly distributed, that is, the expected number of particles. From these data, we can calculate a relative deposition index (RDI) by dividing the observed number of particles by the expected number of particles. The RDI indicates whether the observed number of particles corresponds to that predicted solely by compartment size (for which RDI = 1). Within one group, the observed and expected particle distributions are compared by chi-squared analysis. The total chi-squared value indicates whether an observed distribution is random. If not, the partial chi-squared values help to identify those compartments that are preferential targets of the particles (RDI > 1). Particle distributions between different groups can be compared in a similar way by contingency table analysis. We first describe the preconditions and the way to implement these methods, then provide three worked examples, and finally discuss the advantages, pitfalls, and limitations of this method.
Resumo:
Regional flood frequency techniques are commonly used to estimate flood quantiles when flood data is unavailable or the record length at an individual gauging station is insufficient for reliable analyses. These methods compensate for limited or unavailable data by pooling data from nearby gauged sites. This requires the delineation of hydrologically homogeneous regions in which the flood regime is sufficiently similar to allow the spatial transfer of information. It is generally accepted that hydrologic similarity results from similar physiographic characteristics, and thus these characteristics can be used to delineate regions and classify ungauged sites. However, as currently practiced, the delineation is highly subjective and dependent on the similarity measures and classification techniques employed. A standardized procedure for delineation of hydrologically homogeneous regions is presented herein. Key aspects are a new statistical metric to identify physically discordant sites, and the identification of an appropriate set of physically based measures of extreme hydrological similarity. A combination of multivariate statistical techniques applied to multiple flood statistics and basin characteristics for gauging stations in the Southeastern U.S. revealed that basin slope, elevation, and soil drainage largely determine the extreme hydrological behavior of a watershed. Use of these characteristics as similarity measures in the standardized approach for region delineation yields regions which are more homogeneous and more efficient for quantile estimation at ungauged sites than those delineated using alternative physically-based procedures typically employed in practice. The proposed methods and key physical characteristics are also shown to be efficient for region delineation and quantile development in alternative areas composed of watersheds with statistically different physical composition. In addition, the use of aggregated values of key watershed characteristics was found to be sufficient for the regionalization of flood data; the added time and computational effort required to derive spatially distributed watershed variables does not increase the accuracy of quantile estimators for ungauged sites. This dissertation also presents a methodology by which flood quantile estimates in Haiti can be derived using relationships developed for data rich regions of the U.S. As currently practiced, regional flood frequency techniques can only be applied within the predefined area used for model development. However, results presented herein demonstrate that the regional flood distribution can successfully be extrapolated to areas of similar physical composition located beyond the extent of that used for model development provided differences in precipitation are accounted for and the site in question can be appropriately classified within a delineated region.
Resumo:
The objective of this research is to investigate the consequences of sharing or using information generated in one phase of the project to subsequent life cycle phases. Sometimes the assumptions supporting the information change, and at other times the context within which the information was created changes in a way that causes the information to become invalid. Often these inconsistencies are not discovered till the damage has occurred. This study builds on previous research that proposed a framework based on the metaphor of ‘ecosystems’ to model such inconsistencies in the 'supply chain' of life cycle information (Brokaw and Mukherjee, 2012). The outcome of such inconsistencies often results in litigation. Therefore, this paper studies a set of legal cases that resulted from inconsistencies in life cycle information, within the ecosystems framework. For each project, the errant information type, creator and user of the information and their relationship, time of creation and usage of the information in the life cycle of the project are investigated to assess the causes of failure of precise and accurate information flow as well as the impact of such failures in later stages of the project. The analysis shows that the misleading information is mostly due to lack of collaboration. Besides, in all the studied cases, lack of compliance checking, imprecise data and insufficient clarifications hinder accurate and smooth flow of information. The paper presents findings regarding the bottleneck of the information flow process during the design, construction and post construction phases. It also highlights the role of collaboration as well as information integration and management during the project life cycle and presents a baseline for improvement in information supply chain through the life cycle of the project.
Resumo:
OBJECTIVE: In ictal scalp electroencephalogram (EEG) the presence of artefacts and the wide ranging patterns of discharges are hurdles to good diagnostic accuracy. Quantitative EEG aids the lateralization and/or localization process of epileptiform activity. METHODS: Twelve patients achieving Engel Class I/IIa outcome following temporal lobe surgery (1 year) were selected with approximately 1-3 ictal EEGs analyzed/patient. The EEG signals were denoised with discrete wavelet transform (DWT), followed by computing the normalized absolute slopes and spatial interpolation of scalp topography associated to detection of local maxima. For localization, the region with the highest normalized absolute slopes at the time when epileptiform activities were registered (>2.5 times standard deviation) was designated as the region of onset. For lateralization, the cerebral hemisphere registering the first appearance of normalized absolute slopes >2.5 times the standard deviation was designated as the side of onset. As comparison, all the EEG episodes were reviewed by two neurologists blinded to clinical information to determine the localization and lateralization of seizure onset by visual analysis. RESULTS: 16/25 seizures (64%) were correctly localized by the visual method and 21/25 seizures (84%) by the quantitative EEG method. 12/25 seizures (48%) were correctly lateralized by the visual method and 23/25 seizures (92%) by the quantitative EEG method. The McNemar test showed p=0.15 for localization and p=0.0026 for lateralization when comparing the two methods. CONCLUSIONS: The quantitative EEG method yielded significantly more seizure episodes that were correctly lateralized and there was a trend towards more correctly localized seizures. SIGNIFICANCE: Coupling DWT with the absolute slope method helps clinicians achieve a better EEG diagnostic accuracy.
Resumo:
A large body of research analyzes the runtime execution of a system to extract abstract behavioral views. Those approaches primarily analyze control flow by tracing method execution events or they analyze object graphs of heap snapshots. However, they do not capture how objects are passed through the system at runtime. We refer to the exchange of objects as the object flow, and we claim that object flow is necessary to analyze if we are to understand the runtime of an object-oriented application. We propose and detail Object Flow Analysis, a novel dynamic analysis technique that takes this new information into account. To evaluate its usefulness, we present a visual approach that allows a developer to study classes and components in terms of how they exchange objects at runtime. We illustrate our approach on three case studies.
Resumo:
Clinical studies indicate that exaggerated postprandial lipemia is linked to the progression of atherosclerosis, leading cause of Cardiovascular Diseases (CVD). CVD is a multi-factorial disease with complex etiology and according to the literature postprandial Triglycerides (TG) can be used as an independent CVD risk factor. Aim of the current study is to construct an Artificial Neural Network (ANN) based system for the identification of the most important gene-gene and/or gene-environmental interactions that contribute to a fast or slow postprandial metabolism of TG in blood and consequently to investigate the causality of postprandial TG response. The design and development of the system is based on a dataset of 213 subjects who underwent a two meals fatty prandial protocol. For each of the subjects a total of 30 input variables corresponding to genetic variations, sex, age and fasting levels of clinical measurements were known. Those variables provide input to the system, which is based on the combined use of Parameter Decreasing Method (PDM) and an ANN. The system was able to identify the ten (10) most informative variables and achieve a mean accuracy equal to 85.21%.
Resumo:
To master changing performance demands, autonomous transport vehicles are deployed to make inhouse material flow applications more flexible. The socalled cellular transport system consists of a multitude of small scale transport vehicles which shall be able to form a swarm. Therefore the vehicles need to detect each other, exchange information amongst each other and sense their environment. By provision of peripherally acquired information of other transport entities, more convenient decisions can be made in terms of navigation and collision avoidance. This paper is a contribution to collective utilization of sensor data in the swarm of cellular transport vehicles.
Resumo:
Identifying and comparing different steady states is an important task for clinical decision making. Data from unequal sources, comprising diverse patient status information, have to be interpreted. In order to compare results an expressive representation is the key. In this contribution we suggest a criterion to calculate a context-sensitive value based on variance analysis and discuss its advantages and limitations referring to a clinical data example obtained during anesthesia. Different drug plasma target levels of the anesthetic propofol were preset to reach and maintain clinically desirable steady state conditions with target controlled infusion (TCI). At the same time systolic blood pressure was monitored, depth of anesthesia was recorded using the bispectral index (BIS) and propofol plasma concentrations were determined in venous blood samples. The presented analysis of variance (ANOVA) is used to quantify how accurately steady states can be monitored and compared using the three methods of measurement.
Resumo:
Abstract We demonstrate the use of Fourier transform infrared spectroscopy (FTIRS) to make quantitative measures of total organic carbon (TOC), total inorganic carbon (TIC) and biogenic silica (BSi) concentrations in sediment. FTIRS is a fast and costeffective technique and only small sediment samples are needed (0.01 g). Statistically significant models were developed using sediment samples from northern Sweden and were applied to sediment records from Sweden, northeast Siberia and Macedonia. The correlation between FTIRS-inferred values and amounts of biogeochemical constituents assessed conventionally varied between r = 0.84–0.99 for TOC, r = 0.85– 0.99 for TIC, and r = 0.68–0.94 for BSi. Because FTIR spectra contain information on a large number of both inorganic and organic components, there is great potential for FTIRS to become an important tool in paleolimnology.
Resumo:
We propose a method that robustly combines color and feature buffers to denoise Monte Carlo renderings. On one hand, feature buffers, such as per pixel normals, textures, or depth, are effective in determining denoising filters because features are highly correlated with rendered images. Filters based solely on features, however, are prone to blurring image details that are not well represented by the features. On the other hand, color buffers represent all details, but they may be less effective to determine filters because they are contaminated by the noise that is supposed to be removed. We propose to obtain filters using a combination of color and feature buffers in an NL-means and cross-bilateral filtering framework. We determine a robust weighting of colors and features using a SURE-based error estimate. We show significant improvements in subjective and quantitative errors compared to the previous state-of-the-art. We also demonstrate adaptive sampling and space-time filtering for animations.