856 resultados para inference algorithms


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study semiparametric two-step estimators which have the same structure as parametric doubly robust estimators in their second step. The key difference is that we do not impose any parametric restriction on the nuisance functions that are estimated in a first stage, but retain a fully nonparametric model instead. We call these estimators semiparametric doubly robust estimators (SDREs), and show that they possess superior theoretical and practical properties compared to generic semiparametric two-step estimators. In particular, our estimators have substantially smaller first-order bias, allow for a wider range of nonparametric first-stage estimates, rate-optimal choices of smoothing parameters and data-driven estimates thereof, and their stochastic behavior can be well-approximated by classical first-order asymptotics. SDREs exist for a wide range of parameters of interest, particularly in semiparametric missing data and causal inference models. We illustrate our method with a simulation exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents new methodology for making Bayesian inference about dy~ o!s for exponential famiIy observations. The approach is simulation-based _~t> use of ~vlarkov chain Monte Carlo techniques. A yletropolis-Hastings i:U~UnLlllll 1::; combined with the Gibbs sampler in repeated use of an adjusted version of normal dynamic linear models. Different alternative schemes are derived and compared. The approach is fully Bayesian in obtaining posterior samples for state parameters and unknown hyperparameters. Illustrations to real data sets with sparse counts and missing values are presented. Extensions to accommodate for general distributions for observations and disturbances. intervention. non-linear models and rnultivariate time series are outlined.