925 resultados para incompleteness and inconsistency detection
Resumo:
To ensure food safety and to prevent food-borne illnesses, rapid and accurate detection of pathogenic agents is essential. It has already been demonstrated that shotgun metagenomic sequencing can be used to detect pathogens and their antibiotic resistance genes in food. In the studies presented in this thesis, the application shotgun metagenomic sequencing has been applied to investigate both the microbiome and resistome of foods of animal origin in order to assess advantages and disadvantages of shotgun metagenomic sequencing in comparison to the cultural methods. In the first study, it has been shown that shotgun metagenomics can be applied to detect microorganisms experimentally spiked in cold-smoked salmon. Nevertheless, a direct correlation between cell concentration of each spiked microorganism and number of corresponding reads cannot be established yet. In the second and third studies, the microbiomes and resistomes characterizing caeca and the corresponding carcasses of the birds reared in the conventional and antibiotic free farms were compared. The results highlighted the need to reduce sources of microbial contamination and antimicrobial resistance not only at the farm level but also at the post-harvest one. In the fourth study, it has been demonstrated that testing a single aliquot of a food homogenate is representative of the whole homogenate because biological replicates displayed overlapping taxonomic and functional composition. All in all, the results obtained confirmed that the application of shotgun metagenomic sequencing represents a powerful tool that can be used in the identification of both spoilage and pathogenic microorganism, and their resistome in foods of animal origin. However, a robust relationship between sequence read abundance and concentration of colony-forming unit must be still established.
Resumo:
In this Ph.D. project, original and innovative approaches for the quali-quantitative analysis of abuse substances, as well as therapeutic agents with abuse potential and related compounds were designed, developed and validated for application to different fields such as forensics, clinical and pharmaceutical. All the parameters involved in the developed analytical workflows were properly and accurately optimised, from sample collection to sample pretreatment up to the instrumental analysis. Advanced dried blood microsampling technologies have been developed, able of bringing several advantages to the method as a whole, such as significant reduction of solvent use, feasible storage and transportation conditions and enhancement of analyte stability. At the same time, the use of capillary blood allows to increase subject compliance and overall method applicability by exploiting such innovative technologies. Both biological and non-biological samples involved in this project were subjected to optimised pretreatment techniques developed ad-hoc for each target analyte, making also use of advanced microextraction techniques. Finally, original and advanced instrumental analytical methods have been developed based on high and ultra-high performance liquid chromatography (HPLC,UHPLC) coupled to different detection means (mainly mass spectrometry, but also electrochemical, and spectrophotometric detection for screening purpose), and on attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) for solid-state analysis. Each method has been designed to obtain highly selective, sensitive yet sustainable systems and has been validated according to international guidelines. All the methods developed herein proved to be suitable for the analysis of the compounds under investigation and may be useful tools in medicinal chemistry, pharmaceutical analysis, within clinical studies and forensic investigations.
Resumo:
Vision systems are powerful tools playing an increasingly important role in modern industry, to detect errors and maintain product standards. With the enlarged availability of affordable industrial cameras, computer vision algorithms have been increasingly applied in industrial manufacturing processes monitoring. Until a few years ago, industrial computer vision applications relied only on ad-hoc algorithms designed for the specific object and acquisition setup being monitored, with a strong focus on co-designing the acquisition and processing pipeline. Deep learning has overcome these limits providing greater flexibility and faster re-configuration. In this work, the process to be inspected consists in vials’ pack formation entering a freeze-dryer, which is a common scenario in pharmaceutical active ingredient packaging lines. To ensure that the machine produces proper packs, a vision system is installed at the entrance of the freeze-dryer to detect eventual anomalies with execution times compatible with the production specifications. Other constraints come from sterility and safety standards required in pharmaceutical manufacturing. This work presents an overview about the production line, with particular focus on the vision system designed, and about all trials conducted to obtain the final performance. Transfer learning, alleviating the requirement for a large number of training data, combined with data augmentation methods, consisting in the generation of synthetic images, were used to effectively increase the performances while reducing the cost of data acquisition and annotation. The proposed vision algorithm is composed by two main subtasks, designed respectively to vials counting and discrepancy detection. The first one was trained on more than 23k vials (about 300 images) and tested on 5k more (about 75 images), whereas 60 training images and 52 testing images were used for the second one.
Resumo:
The High Energy Rapid Modular Ensemble of Satellites (HERMES) is a new mission concept involving the development of a constellation of six CubeSats in low Earth orbit with new miniaturized instruments that host a hybrid Silicon Drift Detector/GAGG:Ce based system for X-ray and γ-ray detection, aiming to monitor high-energy cosmic transients, such as Gamma Ray Bursts and the electromagnetic counterparts of gravitational wave events. The HERMES constellation will also operate together with the Australian-Italian SpIRIT mission, which will house a HERMES-like detector. The HERMES pathfinder mini-constellation, consisting of six satellites plus SpIRIT, is likely to be launched in 2023. The HERMES detectors are based on the heritage of the Italian ReDSoX collaboration, with joint design and production by INFN-Trieste and Fondazione Bruno Kessler, and the involvement of several Italian research institutes and universities. An application-specific, low-noise, low-power integrated circuit (ASIC) called LYRA was conceived and designed for the HERMES readout electronics. My thesis project focuses on the ground calibrations of the first HERMES and SpIRIT flight detectors, with a performance assessment and characterization of the detectors. The first part of this work addresses measurements and experimental tests on laboratory prototypes of the HERMES detectors and their front-end electronics, while the second part is based on the design of the experimental setup for flight detector calibrations and related functional tests for data acquisition, as well as the development of the calibration software. In more detail, the calibration parameters (such as the gain of each detector channel) are determined using measurements with radioactive sources, performed at different operating temperatures between -20°C and +20°C by placing the detector in a suitable climate chamber. The final part of the thesis involves the analysis of the calibration data and a discussion of the results.
Resumo:
This study investigated the presence of target bacterial species and the levels of endotoxins in teeth with apical periodontitis. Levels of inflammatory mediators (interleukin [IL]-1β and tumor necrosis factor [TNF]-α) were determined after macrophage stimulation with endodontic content after different phases of endodontic therapy using different irrigants. Thirty primarily infected root canals were randomly assigned into 3 groups according to the irrigant used for root canal preparation (n = 10 per group): GI: 2.5% sodium hypochlorite, GII: 2% chlorhexidine gel, and GIII (control group): saline solution. Root canal samples were taken by using paper points before (s1) and after root canal instrumentation (s2), subsequently to 17% EDTA (s3), after 30 days of intracanal medication (Ca[OH]2 + saline solution) (s4), and before root canal obturation (s5). Polymerase chain reaction (16S recombinant DNA) and limulus amebocyte lysate assay were used for bacterial and endotoxin detection, respectively. Macrophages were stimulated with the root canal contents for IL-1β/TNF-α measurement using enzyme-linked immunosorbent assay. Porphyromonas gingivalis (17/30), Porphyromonas endodontalis (15/30), and Prevotella nigrescens (11/30) were the most prevalent bacterial species. At s1, endotoxins were detected in 100% of the root canals (median = 32.43 EU/mL). In parallel, substantial amounts of IL-1β and TNF-α were produced by endodontic content-stimulated macrophages. At s2, a significant reduction in endotoxin levels was observed in all groups, with GI presenting the greatest reduction (P < .05). After a root canal rinse with EDTA (s3), intracanal medication (s4), and before root canal obturation (s5), endotoxin levels reduced without differences between groups (P < .05). IL-1β and TNF-α release decreased proportionally to the levels of residual endotoxin (P < .05). Regardless of the use of sodium hypochlorite or CHX, the greatest endotoxin reduction occurs after chemomechanical preparation. Increasing steps of root canal therapy associated with intracanal medication enhances endotoxin reduction, leading to a progressively lower activation of proinflammatory cells such as macrophages.
Resumo:
The objective of this research was to determine the levels of enrichment of vitamins B1, B2, B6 and B3 in different types and brands of enriched cookies. The chromatographic separation was performed in a C18 column with gradient elution and UV detection at 254 and 287 nm. The results show that only 5 of the 24 brands evaluated are in accordance with the Brazilian legislation with respect to the vitamin content declared on the labels. However, consumption of approximately 100-150 g of most of the brands supplies the recommended dietary intake for children and adults of the vitamins evaluated.
Resumo:
A method to quantify lycopene and β-carotene in freeze dried tomato pulp by high performance liquid chromatography (HLPC) was validated according to the criteria of selectivity, sensitivity, precision and accuracy, and uncertainty estimation of measurement was determined with data obtained in the validation. The validated method presented is selective in terms of analysis, and it had a good precision and accuracy. Detection limit for lycopene and β-carotene was 4.2 and 0.23 mg 100 g-1, respectively. The estimation of expanded uncertainty (K = 2) for lycopene was 104 ± 21 mg 100 g-1 and for β-carotene was 6.4 ± 1.5 mg 100 g-1.
Resumo:
Context. Star activity makes the mass determination of CoRoT-7b and CoRoT 7c uncertain. Investigators of the CoRoT team proposed several solutions, but all but one of them are larger than the initial determinations of 4.8 +/- 0.8 M(Earth) for CoRoT-7b and 8.4 +/- 0.9 M(Earth) for CoRoT 7c. Aims. This investigation uses the excellent HARPS radial velocity measurements of CoRoT-7 to redetermine the planet masses and to explore techniques for determining mass and orbital elements of planets discovered around active stars when the relative variation in the radial velocity due to the star activity cannot be considered as just noise and can exceed the variation due to the planets. Methods. The main technique used here is a self-consistent version of the high-pass filter used by Queloz et al. (2009, A&A, 506, 303) in the first mass determination of CoRoT-7b and CoRoT-7c. The results are compared to those given by two alternative techniques: (1) the approach proposed by Hatzes et al. (2010, A&A, 520, A93) using only those nights in which two or three observations were done; (2) a pure Fourier analysis. In all cases, the eccentricities are taken equal to zero as indicated by the study of the tidal evolution of the system. The periods are also kept fixed at the values given by Queloz et al. Only the observations done in the time interval BJD 2 454 847-873 are used because they include many nights with multiple observations; otherwise, it is not possible to separate the effects of the rotation fourth harmonic (5.91 d = P(rot)/4) from the alias of the orbital period of CoRoT-7b (0.853585 d). Results. The results of the various approaches are combined to give planet mass values 8.0 +/- 1.2 M(Earth) for CoRoT-7b and 13.6 +/- 1.4 M(Earth) for CoRoT 7c. An estimation of the variation of the radial velocity of the star due to its activity is also given. Conclusions. The results obtained with three different approaches agree to give higher masses than those in previous determinations. From the existing internal structure models they indicate that CoRoT-7b is a much denser super-Earth. The bulk density is 11 +/- 3.5 g cm(-3), so CoRoT-7b may be rocky with a large iron core.
Resumo:
We report the discovery of a tight substellar companion to the young solar analog PZ Tel, a member of the beta Pic moving group observed with high-contrast adaptive optics imaging as part of the Gemini Near-Infrared Coronagraphic Imager Planet-Finding Campaign. The companion was detected at a projected separation of 16.4 +/- 1.0 AU (0.'' 33 +/- 0.'' 01) in 2009 April. Second-epoch observations in 2010 May demonstrate that the companion is physically associated and shows significant orbital motion. Monte Carlo modeling constrains the orbit of PZ Tel B to eccentricities >0.6. The near-IR colors of PZ Tel B indicate a spectral type of M7 +/- 2 and thus this object will be a new benchmark companion for studies of ultracool, low-gravity photospheres. Adopting an age of 12(-4)(+8) Myr for the system, we estimate a mass of 36 +/- 6 M(Jup) based on the Lyon/DUSTY evolutionary models. PZ Tel B is one of the few young substellar companions directly imaged at orbital separations similar to those of giant planets in our own solar system. Additionally, the primary star PZ Tel A shows a 70 mu m emission excess, evidence for a significant quantity of circumstellar dust that has not been disrupted by the orbital motion of the companion.
Resumo:
The VISTA near infrared survey of the Magellanic System (VMC) will provide deep YJK(s) photometry reaching stars in the oldest turn-off point throughout the Magellanic Clouds (MCs). As part of the preparation for the survey, we aim to access the accuracy in the star formation history (SFH) that can be expected from VMC data, in particular for the Large Magellanic Cloud (LMC). To this aim, we first simulate VMC images containing not only the LMC stellar populations but also the foreground Milky Way (MW) stars and background galaxies. The simulations cover the whole range of density of LMC field stars. We then perform aperture photometry over these simulated images, access the expected levels of photometric errors and incompleteness, and apply the classical technique of SFH-recovery based on the reconstruction of colour-magnitude diagrams (CMD) via the minimisation of a chi-squared-like statistics. We verify that the foreground MW stars are accurately recovered by the minimisation algorithms, whereas the background galaxies can be largely eliminated from the CMD analysis due to their particular colours and morphologies. We then evaluate the expected errors in the recovered star formation rate as a function of stellar age, SFR(t), starting from models with a known age-metallicity relation (AMR). It turns out that, for a given sky area, the random errors for ages older than similar to 0.4 Gyr seem to be independent of the crowding. This can be explained by a counterbalancing effect between the loss of stars from a decrease in the completeness and the gain of stars from an increase in the stellar density. For a spatial resolution of similar to 0.1 deg(2), the random errors in SFR(t) will be below 20% for this wide range of ages. On the other hand, due to the lower stellar statistics for stars younger than similar to 0.4 Gyr, the outer LMC regions will require larger areas to achieve the same level of accuracy in the SFR( t). If we consider the AMR as unknown, the SFH-recovery algorithm is able to accurately recover the input AMR, at the price of an increase of random errors in the SFR(t) by a factor of about 2.5. Experiments of SFH-recovery performed for varying distance modulus and reddening indicate that these parameters can be determined with (relative) accuracies of Delta(m-M)(0) similar to 0.02 mag and Delta E(B-V) similar to 0.01 mag, for each individual field over the LMC. The propagation of these errors in the SFR(t) implies systematic errors below 30%. This level of accuracy in the SFR(t) can reveal significant imprints in the dynamical evolution of this unique and nearby stellar system, as well as possible signatures of the past interaction between the MCs and the MW.
Resumo:
Very low intensity and phase fluctuations are present in a bright light field such as a laser beam. These subtle quantum fluctuations may be used to encode quantum information. Although intensity is easily measured with common photodetectors, accessing the phase information requires interference experiments. We introduce one such technique, the rotation of the noise ellipse of light, which employs an optical cavity to achieve the conversion of phase to intensity fluctuations. We describe the quantum noise of light and how it can be manipulated by employing an optical resonance technique and compare it to similar techniques, such as Pound - Drever - Hall laser stabilization and homodyne detection. (c) 2008 American Association of Physics Teachers.
Resumo:
Background: Extracellular vesicles in yeast cells are involved in the molecular traffic across the cell wall. In yeast pathogens, these vesicles have been implicated in the transport of proteins, lipids, polysaccharide and pigments to the extracellular space. Cellular pathways required for the biogenesis of yeast extracellular vesicles are largely unknown. Methodology/Principal Findings: We characterized extracellular vesicle production in wild type (WT) and mutant strains of the model yeast Saccharomyces cerevisiae using transmission electron microscopy in combination with light scattering analysis, lipid extraction and proteomics. WT cells and mutants with defective expression of Sec4p, a secretory vesicle-associated Rab GTPase essential for Golgi-derived exocytosis, or Snf7p, which is involved in multivesicular body (MVB) formation, were analyzed in parallel. Bilayered vesicles with diameters at the 100-300 nm range were found in extracellular fractions from yeast cultures. Proteomic analysis of vesicular fractions from the cells aforementioned and additional mutants with defects in conventional secretion pathways (sec1-1, fusion of Golgi-derived exocytic vesicles with the plasma membrane; bos1-1, vesicle targeting to the Golgi complex) or MVB functionality (vps23, late endosomal trafficking) revealed a complex and interrelated protein collection. Semi-quantitative analysis of protein abundance revealed that mutations in both MVB- and Golgi-derived pathways affected the composition of yeast extracellular vesicles, but none abrogated vesicle production. Lipid analysis revealed that mutants with defects in Golgi-related components of the secretory pathway had slower vesicle release kinetics, as inferred from intracellular accumulation of sterols and reduced detection of these lipids in vesicle fractions in comparison with WT cells. Conclusions/Significance: Our results suggest that both conventional and unconventional pathways of secretion are required for biogenesis of extracellular vesicles, which demonstrate the complexity of this process in the biology of yeast cells.
Resumo:
Low-intensity electrical stimulation (LIES) may counteract the effects of ovariectomy (OVX) on nitric oxide synthase (NOS) expression, osteocyte viability, bone structure, and microarchitecture in rats (Lirani-Galvo et al., Calcif Tissue Int 84:502-509, 2009). The aim of the present study was to investigate if these effects of LIES could be mediated by NO. We analyzed the effects of NO blockage (by l-NAME) in the response to LIES on osteocyte viability, bone structure, and microarchitecture in OVX rats. Sixty rats (200-220 g) were divided into six groups: sham, sham-l-NAME (6 mg/kg/day), OVX, OVX-l-NAME, OVX-LIES, and OVX-LIES-l-NAME. After 12 weeks, rats were killed and tibiae collected for histomorphometric analysis and immunohistochemical detection of endothelial NOS (eNOS), inducible NOS (iNOS), and osteocyte apoptosis (caspase-3 and TUNEL). In the presence of l-NAME, LIES did not counteract the OVX-induced effects on bone volume and trabecular number (as on OVX-LIES). l-NAME blocked the stimulatory effects of LIES on iNOS and eNOS expression of OVX rats. Both l-NAME and LIES decreased osteocyte apoptosis. Our results showed that in OVX rats l-NAME partially blocks the effects of LIES on bone structure, turnover, and expression of iNOS and eNOS, suggesting that NO may be a mediator of some positive effects of LIES on bone.
Resumo:
A simple and rapid method, which involves liquid-phase microextraction (LPME) followed by HPLC analysis using Chiralpak AD column and UV detection, was developed for the enantioselective determination of mefloquine in plasma samples. Several factors that influence the efficiency of three-phase LPME were investigated and optimized. Under the optimal extraction conditions, the mean recoveries were 33.2 and 35.0% for (-)-(SR-)-mefloquine and (+)-(RS)-mefloquine, respectively. The method was linear over 50-1500 ng/ml range. Within-day and between-day assay precision and accuracy were below 15% for both enantiomers at concentrations of 150, 600 and 1200 ng/ml. Furthermore, no racemization or degradation were seen with the method described. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Introduction - Baccharis dracunculifolia, which has great potential for the development of new phytotherapeutic medicines, is the most important botanical source of the southeastern Brazilian propolis, known as green propolis on account of its color. Objective - To develop a reliable reverse-phase HPLC chromatographic method for the analysis of phenolic compounds in both B. dracunculifolia raw material and its hydroalcoholic extracts. Methodology - The method utilised a C(18) CLC-ODS (M) (4.6 x 250 mm) column with nonlinear gradient elution and UV detection at 280 nm. A procedure for the extraction of phenolic compounds using aqueous ethanol 90%, with the addition of veratraldehyde as the internal standard, was developed allowing the quantification of 10 compounds: caffeic acid, coumaric acid, ferulic acid, cinnamic acid, aromadendrin-4`-methyl ether, isosakuranetin, drupanin, artepillin C, baccharin and 2,2-dimethyl-6-carboxyethenyl-2H-1-benzopyran acid. Results - The developed method gave a good detection response with linearity in the range 20.83-800 mu g/mL and recovery in the range 81.25-93.20%, allowing the quantification of the analysed standards. Conclusion - The method presented good results for the following parameters: selectivity, linearity, accuracy, precision, robustness, as well as limit of detection and limit of quantitation. Therefore, this method could be considered as an analytical tool for the quality control of B. dracunculifolia raw material and its products in both cosmetic and pharmaceutical companies. Copyright (C) 2008 John Wiley & Sons, Ltd.