840 resultados para hybrid prediction method


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past ten years, a variety of microRNA target prediction methods has been developed, and many of the methods are constantly improved and adapted to recent insights into miRNA-mRNA interactions. In a typical scenario, different methods return different rankings of putative targets, even if the ranking is reduced to selected mRNAs that are related to a specific disease or cell type. For the experimental validation it is then difficult to decide in which order to process the predicted miRNA-mRNA bindings, since each validation is a laborious task and therefore only a limited number of mRNAs can be analysed. We propose a new ranking scheme that combines ranked predictions from several methods and - unlike standard thresholding methods - utilises the concept of Pareto fronts as defined in multi-objective optimisation. In the present study, we attempt a proof of concept by applying the new ranking scheme to hsa-miR-21, hsa-miR-125b, and hsa-miR-373 and prediction scores supplied by PITA and RNAhybrid. The scores are interpreted as a two-objective optimisation problem, and the elements of the Pareto front are ranked by the STarMir score with a subsequent re-calculation of the Pareto front after removal of the top-ranked mRNA from the basic set of prediction scores. The method is evaluated on validated targets of the three miRNA, and the ranking is compared to scores from DIANA-microT and TargetScan. We observed that the new ranking method performs well and consistent, and the first validated targets are elements of Pareto fronts at a relatively early stage of the recurrent procedure. which encourages further research towards a higher-dimensional analysis of Pareto fronts. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the development of a novel metaheuristic that combines an electromagnetic-like mechanism (EM) and the great deluge algorithm (GD) for the University course timetabling problem. This well-known timetabling problem assigns lectures to specific numbers of timeslots and rooms maximizing the overall quality of the timetable while taking various constraints into account. EM is a population-based stochastic global optimization algorithm that is based on the theory of physics, simulating attraction and repulsion of sample points in moving toward optimality. GD is a local search procedure that allows worse solutions to be accepted based on some given upper boundary or ‘level’. In this paper, the dynamic force calculated from the attraction-repulsion mechanism is used as a decreasing rate to update the ‘level’ within the search process. The proposed method has been applied to a range of benchmark university course timetabling test problems from the literature. Moreover, the viability of the method has been tested by comparing its results with other reported results from the literature, demonstrating that the method is able to produce improved solutions to those currently published. We believe this is due to the combination of both approaches and the ability of the resultant algorithm to converge all solutions at every search process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we investigate the influence of a power-law noise model, also called noise, on the performance of a feed-forward neural network used to predict time series. We introduce an optimization procedure that optimizes the parameters the neural networks by maximizing the likelihood function based on the power-law model. We show that our optimization procedure minimizes the mean squared leading to an optimal prediction. Further, we present numerical results applying method to time series from the logistic map and the annual number of sunspots demonstrate that a power-law noise model gives better results than a Gaussian model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One way to restore physiological blood flow to occluded arteries involves the deformation of plaque using an intravascular balloon and preventing elastic recoil using a stent. Angioplasty and stent implantation cause unphysiological loading of the arterial tissue, which may lead to tissue in-growth and reblockage; termed “restenosis.” In this paper, a computational methodology for predicting the time-course of restenosis is presented. Stress-induced damage, computed using a remaining life approach, stimulates inflammation (production of matrix degrading factors and growth stimuli). This, in turn, induces a change in smooth muscle cell phenotype from contractile (as exists in the quiescent tissue) to synthetic (as exists in the growing tissue). In this paper, smooth muscle cell activity (migration, proliferation, and differentiation) is simulated in a lattice using a stochastic approach to model individual cell activity. The inflammation equations are examined under simplified loading cases. The mechanobiological parameters of the model were estimated by calibrating the model response to the results of a balloon angioplasty study in humans. The simulation method was then used to simulate restenosis in a two dimensional model of a stented artery. Cell activity predictions were similar to those observed during neointimal hyperplasia, culminating in the growth of restenosis. Similar to experiment, the amount of neointima produced increased with the degree of expansion of the stent, and this relationship was found to be highly dependant on the prescribed inflammatory response. It was found that the duration of inflammation affected the amount of restenosis produced, and that this effect was most pronounced with large stent expansions. In conclusion, the paper shows that the arterial tissue response to mechanical stimulation can be predicted using a stochastic cell modeling approach, and that the simulation captures features of restenosis development observed with real stents. The modeling approach is proposed for application in three dimensional models of cardiovascular stenting procedures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel model for indoor wireless communication, based on a dual image and ray-shooting approach, is presented. The model, capable of improved site-specific indoor propagation prediction, considers multiple human bodies moving within the environment. In a modern office at 2.45GHz, the combined effect of pedestrian traffic and a moving receiver causes rapid temporal fading of up to 30dB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conditional branches frequently exhibit similar behavior (bias, time-varying behavior,...), a property that can be used to improve branch prediction accuracy. Branch clustering constructs groups or clusters of branches with similar behavior and applies different branch prediction techniques to each branch cluster. We revisit the topic of branch clustering with the aim of generalizing branch clustering. We investigate several methods to measure cluster information, with the most effective the storage of information in the branch target buffer. Also, we investigate alternative methods of using the branch cluster identification in the branch predictor. By these improvements we arrive at a branch clustering technique that obtains higher accuracy than previous approaches presented in the literature for the gshare predictor. Furthermore, we evaluate our branch clustering technique in a wide range of predictors to show the general applicability of the method. Branch clustering improves the accuracy of the local history (PAg) predictor, the path-based perceptron and the PPM-like predictor, one of the 2004 CBP finalists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

P2Y(1) is an ADP-activated G protein-coupled receptor (GPCR). Its antagonists impede platelet aggregation in vivo and are potential antithrombotic agents. Combining ligand and structure-based modeling we generated a consensus model (LIST-CM) correlating antagonist structures with their potencies. We docked 45 antagonists into our rhodopsin-based human P2Y(1) homology model and calculated docking scores and free binding energies with the Linear Interaction Energy (LIE) method in continuum-solvent. The resulting alignment was also used to build QSAR based on CoMFA, CoMSIA, and molecular descriptors. To benefit from the strength of each technique and compensate for their limitations, we generated our LIST-CM with a PLS regression based on the predictions of each methodology. A test set featuring untested substituents was synthesized and assayed in inhibition of 2-MeSADP-stimulated PLC activity and in radioligand binding. LIST-CM outperformed internal and external predictivity of any individual model to predict accurately the potency of 75% of the test set.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel technique is described for the identification and quantification of environmental pollutants based on toxicity fingerprinting with a metabolic lux-marked bacterial biosensor. This method involved characterizing the toxicity-based responses of the biosensor to seven calibration pollutants as acute temporal-dose response fingerprints. An algorithm is described to allow comparisons of responses of an unknown pollutant to be made against the calibration data. This is based on predicting pollutant concentration at each of six different time points over the course of a 5-min assay. If the prediction is consistent between the unknown pollutant and a calibration pollutant at the 95% test level, this is considered to be a positive identification. All seven calibration pollutants could be successfully distinguished from each other with this technique. Environmental samples, individually spiked with single concentrations of pollutants, were compared in this way against the calibration pollutants. An 83% identification success was achieved, with no false positives at the 95% test level. This is a simple and rapid technique that potentially can be applied to monitoring of industrial wastewater or as a screening tool for regulators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical and experimental investigation on the mode-I intralaminar toughness of a hybrid plain weave composite laminate manufactured using resin infusion under flexible tooling (RIFT) process is presented in this paper. The pre-cracked geometries consisted of overheight compact tension (OCT), double edge notch (DEN) and centrally cracked four-point-bending (4PBT) test specimens. The position as well as the strain field ahead of the crack tip during the loading stage was determined using a digital speckle photogrammetry system. The limitation on the applicability of the standard data reduction schemes for the determination of intralaminar toughness of composite materials is presented and discussed. A methodology based on the numerical evaluation of the strain energy release rate using the J-integral method is proposed to derive new geometric correction functions for the determination of the stress intensity factor for composites. The method accounts for material anisotropy and finite specimen dimension effects regardless of the geometry. The approach has been validated for alternative non-standard specimen geometries. A comparison between different methods currently available for computing the intralaminar fracture toughness in composite laminates is presented and a good agreement between numerical and experimental results using the proposed methodology was obtained. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Invasion ecology urgently requires predictive methodologies that can forecast the ecological impacts of existing, emerging and potential invasive species. We argue that many ecologically damaging invaders are characterised by their more efficient use of resources. Consequently, comparison of the classical ‘functional response’ (relationship between resource use and availability) between invasive and trophically analogous native species may allow prediction of invader ecological impact. We review the utility of species trait comparisons and the history and context of the use of functional responses in invasion ecology, then present our framework for the use of comparative functional responses. We show that functional response analyses, by describing the resource use of species over a range of resource availabilities, avoids many pitfalls of ‘snapshot’ assessments of resource use. Our framework demonstrates how comparisons of invader and native functional responses, within and between Type II and III functional responses, allow testing of the likely population-level outcomes of invasions for affected species. Furthermore, we describe how recent studies support the predictive capacity of this method; for example, the invasive ‘bloody red shrimp’ Hemimysis anomala shows higher Type II functional responses than native mysids and this corroborates, and could have predicted, actual invader impacts in the field. The comparative functional response method can also be used to examine differences in the impact of two or more invaders, two or more populations of the same invader, and the abiotic (e.g. temperature) and biotic (e.g. parasitism) context-dependencies of invader impacts. Our framework may also address the previous lack of rigour in testing major hypotheses in invasion ecology, such as the ‘enemy release’ and ‘biotic resistance’ hypotheses, as our approach explicitly considers demographic consequences for impacted resources, such as native and invasive prey species. We also identify potential challenges in the application of comparative functional responses in invasion ecology. These include incorporation of numerical responses, multiple predator effects and trait-mediated indirect interactions, replacement versus non-replacement study designs and the inclusion of functional responses in risk assessment frameworks. In future, the generation of sufficient case studies for a meta-analysis could test the overall hypothesis that comparative functional responses can indeed predict invasive species impacts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The purpose of this paper is to present an artificial neural network (ANN) model that predicts earthmoving trucks condition level using simple predictors; the model’s performance is compared to the respective predictive accuracy of the statistical method of discriminant analysis (DA).

Design/methodology/approach: An ANN-based predictive model is developed. The condition level predictors selected are the capacity, age, kilometers travelled and maintenance level. The relevant data set was provided by two Greek construction companies and includes the characteristics of 126 earthmoving trucks.

Findings: Data processing identifies a particularly strong connection of kilometers travelled and maintenance level with the earthmoving trucks condition level. Moreover, the validation process reveals that the predictive efficiency of the proposed ANN model is very high. Similar findings emerge from the application of DA to the same data set using the same predictors.

Originality/value: Earthmoving trucks’ sound condition level prediction reduces downtime and its adverse impact on earthmoving duration and cost, while also enhancing the maintenance and replacement policies effectiveness. This research proves that a sound condition level prediction for earthmoving trucks is achievable through the utilization of easy to collect data and provides a comparative evaluation of the results of two widely applied predictive methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Digital manufacturing techniques can simulate complex assembly sequences using computer-aided design-based, as-designed' part forms, and their utility has been proven across several manufacturing sectors including the ship building, automotive and aerospace industries. However, the reality of working with actual parts and composite components, in particular, is that geometric variability arising from part forming or processing conditions can cause problems during assembly as the as-manufactured' form differs from the geometry used for any simulated build validation. In this work, a simulation strategy is presented for the study of the process-induced deformation behaviour of a 90 degrees, V-shaped angle. Test samples were thermoformed using pre-consolidated carbon fibre-reinforced polyphenylene sulphide, and the processing conditions were re-created in a virtual environment using the finite element method to determine finished component angles. A procedure was then developed for transferring predicted part forms from the finite element outputs to a digital manufacturing platform for the purpose of virtual assembly validation using more realistic part geometry. Ultimately, the outcomes from this work can be used to inform process condition choices, material configuration and tool design, so that the dimensional gap between as-designed' and as-manufactured' part forms can be reduced in the virtual environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To simultaneously evaluate 14 biomarkers from distinct biological pathways for risk prediction of ischemic stroke, including biomarkers of hemostasis, inflammation, and endothelial activation as well as chemokines and adipocytokines.
Methods and Results: The Prospective Epidemiological Study on Myocardial Infarction (PRIME) is a cohort of 9771 healthy men 50 to 59 years of age who were followed up over 10 years. In a nested case–control study, 95 ischemic stroke cases were matched with 190 controls. After multivariable adjustment for traditional risk factors, fibrinogen (odds ratio [OR], 1.53; 95% confidence interval [CI], 1.03–2.28), E-selectin (OR, 1.76; 95% CI, 1.06–2.93), interferon-γ-inducible-protein-10 (OR, 1.72; 95% CI, 1.06–2.78), resistin (OR, 2.86; 95% CI, 1.30–6.27), and total adiponectin (OR, 1.82; 95% CI, 1.04–3.19) were significantly associated with ischemic stroke. Adding E-selectin and resistin to a traditional risk factor model significantly increased the area under the receiver-operating characteristic curve from 0.679 (95% CI, 0.612–0.745) to 0.785 and 0.788, respectively, and yielded a categorical net reclassification improvement of 29.9% (P=0.001) and 28.4% (P=0.002), respectively. Their simultaneous inclusion in the traditional risk factor model increased the area under the receiver-operating characteristic curve to 0.824 (95% CI, 0.770–0.877) and resulted in an net reclassification improvement of 41.4% (P<0.001). Results were confirmed when using continuous net reclassification improvement.
Conclusion: Among multiple biomarkers from distinct biological pathways, E-selectin and resistin provided incremental and additive value to traditional risk factors in predicting ischemic stroke.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A general method to prepare organic-inorganic hybrid aerogels has been presented. A series of organic-inorganic hybrid aerogels were successfully produced from 3d trivalent transition metals (Cr3+, Fe3+) and bridging carboxylic acids. Gelation of the Cr(III) gels was achieved by heating the precursor solution to temperatures above 80 degrees C, which is in sharp contrast to usual supramolecular gels. Among a range of ligands used, highly porous aerogels could be prepared from rigid carboxylate, e.g. 1,4-benzenedicarboxylate and 1,3,5-benzenetricarboxylate. The porous aerogels can be described as a coherent, rigid spongy network of continuous nanometre-sized particles, which is significantly different from the usual fibrous network of supramolecular gels. The aerogels have tunable porous structures with micro-and mesoporosity depending on their reactant concentrations. Their surface areas, pore volumes, and average pore sizes were analysed by using nitrogen sorption, and the accessibility of the pores to bulky molecules was also evaluated. It represents a strategy to prepare hybrid materials with large porosity utilising structurally simple building blocks as precursors.