892 resultados para homogeneous mutitype Markov chains
Resumo:
The use of hidden Markov models is placed in a connectionist framework, and an alternative approach to improving their ability to discriminate between classes is described. Using a network style of training, a measure of discrimination based on the a posteriori probability of state occupation is proposed, and the theory for its optimization using error back-propagation and gradient ascent is presented. The method is shown to be numerically well behaved, and results are presented which demonstrate that when using a simple threshold test on the probability of state occupation, the proposed optimization scheme leads to improved recognition performance.
Resumo:
This paper presents a new architecture which integrates recurrent input transformations (RIT) and continuous density HMMs. The basic HMM structure is extended to accommodate recurrent neural networks which transform the input observations before they enter the Gaussian output distributions associated with the states of the HMM. During training the parameters of both HMM and RIT are simultaneously optimized according to the Maximum Mutual Information (MMI) criterion. Results are presented for the E-set recognition task which demonstrate the ability of recurrent input transformations to exploit longer term correlations in the speech signal and to give improved discrimination.
Resumo:
Given a spectral density matrix or, equivalently, a real autocovariance sequence, the author seeks to determine a finite-dimensional linear time-invariant system which, when driven by white noise, will produce an output whose spectral density is approximately PHI ( omega ), and an approximate spectral factor of PHI ( omega ). The author employs the Anderson-Faurre theory in his analysis.
Resumo:
This paper discusses the problem of restoring a digital input signal that has been degraded by an unknown FIR filter in noise, using the Gibbs sampler. A method for drawing a random sample of a sequence of bits is presented; this is shown to have faster convergence than a scheme by Chen and Li, which draws bits independently. ©1998 IEEE.
Resumo:
Models for simulating Scanning Probe Microscopy (SPM) may serve as a reference point for validating experimental data and practice. Generally, simulations use a microscopic model of the sample-probe interaction based on a first-principles approach, or a geometric model of macroscopic distortions due to the probe geometry. Examples of the latter include use of neural networks, the Legendre Transform, and dilation/erosion transforms from mathematical morphology. Dilation and the Legendre Transform fall within a general family of functional transforms, which distort a function by imposing a convex solution.In earlier work, the authors proposed a generalized approach to modeling SPM using a hidden Markov model, wherein both the sample-probe interaction and probe geometry may be taken into account. We present a discussion of the hidden Markov model and its relationship to these convex functional transforms for simulating and restoring SPM images.©2009 SPIE.
Resumo:
We present a new approach for estimating mixing between populations based on non-recombining markers, specifically Y-chromosome microsatellites. A Markov chain Monte Carlo (MCMC) Bayesian statistical approach is used to calculate the posterior probability
Resumo:
Novel statistical models are proposed and developed in this paper for automated multiple-pitch estimation problems. Point estimates of the parameters of partial frequencies of a musical note are modeled as realizations from a non-homogeneous Poisson process defined on the frequency axis. When several notes are combined, the processes for the individual notes combine to give a new Poisson process whose likelihood is easy to compute. This model avoids the data-association step of linking the harmonics of each note with the corresponding partials and is ideal for efficient Bayesian inference of unknown multiple fundamental frequencies in a signal. © 2011 IEEE.
Resumo:
The Ugandan fishery, heavily influenced by the emergence of global markets, is extremely dynamic. In recent years a major export trade, principally in Nile perch fillets from Lake Victoria, has expanded markedly. The growth of this factory based processing industry has had a marked impact on the pre-existing artisanal fishery, which has become increasingly dependent on supplying the export market instead of its traditional local small-scale markets. The industrial fishery developed as a response to the liberalisation of the management of the Ugandan economy and the consequent opening up of the export markets in North America and Europe. The emergence of the export industry has resulted in the creation of a dual structure in the fisheries sector, with the Nile perch catching and processing chain operating to European standards, whilst the artisanal sub-sector still utilises traditional methods. This dual structure is a potential source of disadvantage to the artisanal fishery which has command over fewer financial assets than the export fishery.