990 resultados para higher curvature gravity
Resumo:
An analysis of the base pair doublet geometries in available crystal structures indicates that the often reported intrinsic curvature of DNA containing oligo-(d(A).d(T)) tracts may also depend on the nature of the flanking sequences. The presence of CA/TG doublet in particular at the 5' end of these tracts is expected to enhance their intrinsic bending property. To test this proposition, three oligonucleotides, d(GAAAAACCCCCC), d(CCCCCCAAAAAG), d(GAAAAATTTTTC), and their complementary sequences were synthesized to study the effect of various flanking sequences, at the 5' and 3' ends of the A-tracts, on the curvature of DNA in solution. An analysis of the polyacrylamide gel electrophoretic mobilities of these sequences under different conditions of salts and temperatures (below their melting points) clearly showed that the oligomer with CA/TG sequence in the center was always more retarded than the oligomer with AC/GT sequence, as well as the oligomer with AT/AT sequence. Hydroxyl radical probing of the sequences with AC/GT and CA/TG doublet junctions gives a similar cutting pattern in the A-tracts, which is quite different from that in the C-tracts, indicating that the oligo(A)-tracts have similar structures in the two oligomers. KMnO4 probing shows that the oligomer with a CA/TG doublet junction forms a kink that is responsible for its inherent curvature and unusual electrophoretic mobility. UV melting shows a reduced thermal stability of the duplex with CA/TG doublet junction, and circular dichroism (CD) studies indicate that a premelting transition occurs in the oligomer with CA/TG doublet step before global melting but not in the oligomer with AC/GT doublet step, which may correspond to thermally induced unbending of the oligomer. These observations indicate that the CA/TG doublet junction at the 5' end of the oligo(A)-tract has a crucial role in modulating the overall curvature in DNA.
Resumo:
Extensive molecular dynamics simulations have been carried out to calculate the orientational correlation functions Cl(t), G(t) = [4n/(21 + l)]Ci=-l (Y*lm(sZ(0)) Ylm(Q(t))) (where Y,,(Q) are the spherical harmonics) of point dipoles in a cubic lattice. The decay of Cl(t) is found to be strikingly different from higher l-correlation functions-the latter do not exhibit diffusive dynamics even in the long time. Both the cumulant expansion expression of Lynden-Bell and the conventional memory function equation provide very good description of the Cl(t) in the short time but fail to reproduce the observed slow, long time decay of c1 (t) .
Resumo:
The O(m(pi)4/(m(u) + (d))2Q2) and O(alpha(S)2) corrections to the leading term of the perturbative QCD calculation of the pion electromagnetic form factor are examined numerically. Both sets of terms provide significant corrections for values of Q2 between 1 and 15 GeV2/c2.
Resumo:
A new linear algebraic approach for identification of a nonminimum phase FIR system of known order using only higher order (>2) cumulants of the output process is proposed. It is first shown that a matrix formed from a set of cumulants of arbitrary order can be expressed as a product of structured matrices. The subspaces of this matrix are then used to obtain the parameters of the FIR system using a set of linear equations. Theoretical analysis and numerical simulation studies are presented to characterize the performance of the proposed methods.
Resumo:
We show that the recently proposed Dirac-Born-Infeld extension of new massive gravity emerges naturally as a counterterm in four-dimensional anti-de Sitter space (AdS(4)). The resulting on-shell Euclidean action is independent of the cutoff at zero temperature. We also find that the same choice of counterterm gives the usual area law for the AdS(4) Schwarzschild black hole entropy in a cutoff-independent manner. The parameter values of the resulting counterterm action correspond to a c = 0 theory in the context of the duality between AdS(3) gravity and two-dimensional conformal field theory. We rewrite this theory in terms of the gauge field that is used to recast 3D gravity as a Chern-Simons theory.
Resumo:
Vibration and buckling of curved plates, made of hybrid laminated composite materials, are studied using first-order shear deformation theory and Reissner's shallow shell theory. For an initial study, only simply-supported boundary conditions are considered. The natural frequencies and critical buckling loads are calculated using the energy method (Lagrangian approach) by assuming a combination of sine and cosine functions in the form of double Fourier series. The effects of curvature, aspect ratio, stacking sequence and ply-orientation are studied. The non-dimensional frequencies and critical buckling load of a hybrid laminate lie in between the values for laminates made of all plies of higher strength and lower strength fibres. Curvature enhances natural frequencies and it is more predominant for a thin panel than a thick one.
Resumo:
We present here a critical assessment of two vortex approaches (both two-dimensional) to the modelling of turbulent mixing layers. In the first approach the flow is represented by point vortices, and in the second it is simulated as the evolution of a continuous vortex sheet composed of short linear elements or ''panels''. The comparison is based on fresh simulations using approximately the same number of elements in either model, paying due attention in both to the boundary conditions far downstream as well as those on the splitter plate from which the mixing layer issues. The comparisons show that, while both models satisfy the well-known invariants of vortex dynamics approximately to the same accuracy, the vortex panel model, although ultimately not convergent, leads to smoother roll-up and values of stresses and moments that are in closer agreement with the experiment, and has a higher computational efficiency for a given degree of convergence on moments. The point vortex model, while faster for a given number of elements, produces an unsatisfactory roll-up which (for the number of elements used) is rendered worse by the incorporation of the Van der Vooren correction for sheet curvature.
Resumo:
In this paper, we shed light on the cross-layer interactions between the PHY, link and routing layers in networks with MIMO links operating in the diversity mode. Many previous studies assume an overly simplistic PHY layer model that does not sufficiently capture these interactions. We show that the use of simplistic models can in fact lead to misleading conclusions with regards to the higher layer performance with MIMO diversity. Towards understanding the impact of various PHY layer features on MIMO diversity, we begin with a simple but widely-used model and progressively incorporate these features to create new models. We examine the goodness of these models by comparing the simulated performance results with each, with measurements on an indoor 802.11 n testbed. Our work reveals several interesting cross-layer dependencies that affect the gains due to MIMO diversity. In particular, we observe that relative to SISO links: (a) PHY layer gains due to MIMO diversity do not always carry over to the higher layers, (b) the use of other PHY layer features such as FEC codes significantly influence the gains due to MIMO diversity, and (c) the choice of the routing metric can impact the gains possible with MIMO.
Resumo:
We describe simple one-dimensional models of passive (no energy input, no control), generally dissipative, vertical hopping and one-ball juggling. The central observation is that internal passive system motions can conspire to eliminate collisions in these systems. For hopping, two point masses are connected by a spring and the lower mass has inelastic collisions with the ground. For juggling, a lower point-mass hand is connected by a spring to the ground and an upper point-mass ball is caught with an inelastic collision and then re-thrown into gravitational free flight. The two systems have identical dynamics. Despite inelastic collisions between non-zero masses, these systems have special symmetric energy-conserving periodic motions where the collision is at zero relative velocity. Additionally, these special periodic motions have a non-zero sized, one-sided region of attraction on the higher-energy side. For either very large or very small mass ratios, the one-sided region of attraction is large. These results persist for mildly non-linear springs and non-constant gravity. Although non-collisional damping destroys the periodic motions, small energy injection makes the periodic motions stable, with a two-sided region of attraction. The existence of such special energy conserving solutions for hopping and juggling points to possibly useful strategies for both animals and robots. The lossless motions are demonstrated with a table-top experiment.
Resumo:
This paper brings out the existence of the maximum in the curvature of the vapour pressure curve. It occurs in the reduced temperature range of 0.6–0.7 for all liquids and has a value of 3.8–4.8. A set of 17 working fluids consisting of several refrigerants, carbon dioxide, cryogenic liquids and water are taken as test fluids. There exists also a minimum close to the critical point which can be observed only when a thermodynamically consistent functional form of the vapour pressure equation is chosen. This feature, in addition to throwing some light on the behaviour of the vapour pressure curve, could provide some useful inputs to the choice of working fluids for vapour pressure thermometers and thermostatic expansion valves.
Resumo:
Consider a sequence of closed, orientable surfaces of fixed genus g in a Riemannian manifold M with uniform upper bounds on the norm of mean curvature and area. We show that on passing to a subsequence, we can choose parametrisations of the surfaces by inclusion maps from a fixed surface of the same genus so that the distance functions corresponding to the pullback metrics converge to a pseudo-metric and the inclusion maps converge to a Lipschitz map. We show further that the limiting pseudo-metric has fractal dimension two. As a corollary, we obtain a purely geometric result. Namely, we show that bounds on the mean curvature, area and genus of a surface F subset of M, together with bounds on the geometry of M, give an upper bound on the diameter of F. Our proof is modelled on Gromov's compactness theorem for J-holomorphic curves.
Resumo:
MEMS resonators have potential applications in the areas of RF-MEMS, clock oscillators, ultrasound transducers, etc. The important characteristics of a resonator are its resonant frequency and Q-factor (a measure of damping). Usually large damping in macro structures makes it difficult to excite and measure their higher modes. In contrast, MEMS resonators seem amenable to excitation in higher modes. In this paper, 28 modes of vibration of an electrothermal actuator are experimentally captured–perhaps the highest number of modes experimentally captured so far. We verify these modes with FEM simulations and report that all the measured frequencies are within 5% of theoretically predicted values.