931 resultados para height of instrument
Resumo:
We present the discovery and characterisation of the exoplanets WASP-113b and WASP-114b by the WASP survey, SOPHIE and CORALIE. The planetary nature of the systems was established by performing follow-up photometric and spectroscopic observations. The follow-up data were combined with the WASP-photometry and analysed with an MCMC code to obtain system parameters. The host stars WASP-113 and WASP-114 are very similar. They are both early G-type stars with an effective temperature of ~5900K, [Fe/H] ~0.12 and T_{eff} ~4.1 dex. However, WASP-113 is older than WASP-114. Although the planetary companions have similar radii, WASP-114b is almost 4 times heavier than WASP-113b. WASP-113b has a mass of 0.48 M_{Jup} and an orbital period of ~4.5 days; WASP-114b has a mass of 1.77 M_{Jup} and an orbital period of ~1.5 days. Both planets have inflated radii, in particular WASP-113 with a radius anomaly of Re=0.35. The high scale height of WASP-113b (~950 km ) makes it a good target for follow-up atmospheric observations.
Resumo:
In dieser Arbeit werden optische Filterarrays für hochqualitative spektroskopische Anwendungen im sichtbaren (VIS) Wellenlängenbereich untersucht. Die optischen Filter, bestehend aus Fabry-Pérot (FP)-Filtern für hochauflösende miniaturisierte optische Nanospektrometer, basieren auf zwei hochreflektierenden dielektrischen Spiegeln und einer zwischenliegenden Resonanzkavität aus Polymer. Jeder Filter erlaubt einem schmalbandigem spektralen Band (in dieser Arbeit Filterlinie genannt) ,abhängig von der Höhe der Resonanzkavität, zu passieren. Die Effizienz eines solchen optischen Filters hängt von der präzisen Herstellung der hochselektiven multispektralen Filterfelder von FP-Filtern mittels kostengünstigen und hochdurchsatz Methoden ab. Die Herstellung der multiplen Spektralfilter über den gesamten sichtbaren Bereich wird durch einen einzelnen Prägeschritt durch die 3D Nanoimprint-Technologie mit sehr hoher vertikaler Auflösung auf einem Substrat erreicht. Der Schlüssel für diese Prozessintegration ist die Herstellung von 3D Nanoimprint-Stempeln mit den gewünschten Feldern von Filterkavitäten. Die spektrale Sensitivität von diesen effizienten optischen Filtern hängt von der Genauigkeit der vertikalen variierenden Kavitäten ab, die durch eine großflächige ‚weiche„ Nanoimprint-Technologie, UV oberflächenkonforme Imprint Lithographie (UV-SCIL), ab. Die Hauptprobleme von UV-basierten SCIL-Prozessen, wie eine nichtuniforme Restschichtdicke und Schrumpfung des Polymers ergeben Grenzen in der potenziellen Anwendung dieser Technologie. Es ist sehr wichtig, dass die Restschichtdicke gering und uniform ist, damit die kritischen Dimensionen des funktionellen 3D Musters während des Plasmaätzens zur Entfernung der Restschichtdicke kontrolliert werden kann. Im Fall des Nanospektrometers variieren die Kavitäten zwischen den benachbarten FP-Filtern vertikal sodass sich das Volumen von jedem einzelnen Filter verändert , was zu einer Höhenänderung der Restschichtdicke unter jedem Filter führt. Das volumetrische Schrumpfen, das durch den Polymerisationsprozess hervorgerufen wird, beeinträchtigt die Größe und Dimension der gestempelten Polymerkavitäten. Das Verhalten des großflächigen UV-SCIL Prozesses wird durch die Verwendung von einem Design mit ausgeglichenen Volumen verbessert und die Prozessbedingungen werden optimiert. Das Stempeldesign mit ausgeglichen Volumen verteilt 64 vertikal variierenden Filterkavitäten in Einheiten von 4 Kavitäten, die ein gemeinsames Durchschnittsvolumen haben. Durch die Benutzung der ausgeglichenen Volumen werden einheitliche Restschichtdicken (110 nm) über alle Filterhöhen erhalten. Die quantitative Analyse der Polymerschrumpfung wird in iii lateraler und vertikaler Richtung der FP-Filter untersucht. Das Schrumpfen in vertikaler Richtung hat den größten Einfluss auf die spektrale Antwort der Filter und wird durch die Änderung der Belichtungszeit von 12% auf 4% reduziert. FP Filter die mittels des Volumengemittelten Stempels und des optimierten Imprintprozesses hergestellt wurden, zeigen eine hohe Qualität der spektralen Antwort mit linearer Abhängigkeit zwischen den Kavitätshöhen und der spektralen Position der zugehörigen Filterlinien.
Finite element modeling of straightening of thin-walled seamless tubes of austenitic stainless steel
Resumo:
During this thesis work a coupled thermo-mechanical finite element model (FEM) was builtto simulate hot rolling in the blooming mill at Sandvik Materials Technology (SMT) inSandviken. The blooming mill is the first in a long line of processes that continuously or ingotcast ingots are subjected to before becoming finished products. The aim of this thesis work was twofold. The first was to create a parameterized finiteelement (FE) model of the blooming mill. The commercial FE software package MSCMarc/Mentat was used to create this model and the programing language Python was used toparameterize it. Second, two different pass schedules (A and B) were studied and comparedusing the model. The two pass series were evaluated with focus on their ability to healcentreline porosity, i.e. to close voids in the centre of the ingot. This evaluation was made by studying the hydrostatic stress (σm), the von Mises stress (σeq)and the plastic strain (εp) in the centre of the ingot. From these parameters the stress triaxiality(Tx) and the hydrostatic integration parameter (Gm) were calculated for each pass in bothseries using two different transportation times (30 and 150 s) from the furnace. The relationbetween Gm and an analytical parameter (Δ) was also studied. This parameter is the ratiobetween the mean height of the ingot and the contact length between the rolls and the ingot,which is useful as a rule of thumb to determine the homogeneity or penetration of strain for aspecific pass. The pass series designed with fewer passes (B), many with greater reduction, was shown toachieve better void closure theoretically. It was also shown that a temperature gradient, whichis the result of a longer holding time between the furnace and the blooming mill leads toimproved void closure.
Resumo:
During this thesis work a coupled thermo-mechanical finite element model (FEM) was builtto simulate hot rolling in the blooming mill at Sandvik Materials Technology (SMT) inSandviken. The blooming mill is the first in a long line of processes that continuously or ingotcast ingots are subjected to before becoming finished products. The aim of this thesis work was twofold. The first was to create a parameterized finiteelement (FE) model of the blooming mill. The commercial FE software package MSCMarc/Mentat was used to create this model and the programing language Python was used toparameterize it. Second, two different pass schedules (A and B) were studied and comparedusing the model. The two pass series were evaluated with focus on their ability to healcentreline porosity, i.e. to close voids in the centre of the ingot. This evaluation was made by studying the hydrostatic stress (σm), the von Mises stress (σeq)and the plastic strain (εp) in the centre of the ingot. From these parameters the stress triaxiality(Tx) and the hydrostatic integration parameter (Gm) were calculated for each pass in bothseries using two different transportation times (30 and 150 s) from the furnace. The relationbetween Gm and an analytical parameter (Δ) was also studied. This parameter is the ratiobetween the mean height of the ingot and the contact length between the rolls and the ingot,which is useful as a rule of thumb to determine the homogeneity or penetration of strain for aspecific pass. The pass series designed with fewer passes (B), many with greater reduction, was shown toachieve better void closure theoretically. It was also shown that a temperature gradient, whichis the result of a longer holding time between the furnace and the blooming mill leads toimproved void closure.
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
The PhD project addresses the potential of using concentrating solar power (CSP) plants as a viable alternative energy producing system in Libya. Exergetic, energetic, economic and environmental analyses are carried out for a particular type of CSP plants. The study, although it aims a particular type of CSP plant – 50 MW parabolic trough-CSP plant, it is sufficiently general to be applied to other configurations. The novelty of the study, in addition to modeling and analyzing the selected configuration, lies in the use of a state-of-the-art exergetic analysis combined with the Life Cycle Assessment (LCA). The modeling and simulation of the plant is carried out in chapter three and they are conducted into two parts, namely: power cycle and solar field. The computer model developed for the analysis of the plant is based on algebraic equations describing the power cycle and the solar field. The model was solved using the Engineering Equation Solver (EES) software; and is designed to define the properties at each state point of the plant and then, sequentially, to determine energy, efficiency and irreversibility for each component. The developed model has the potential of using in the preliminary design of CSPs and, in particular, for the configuration of the solar field based on existing commercial plants. Moreover, it has the ability of analyzing the energetic, economic and environmental feasibility of using CSPs in different regions of the world, which is illustrated for the Libyan region in this study. The overall feasibility scenario is completed through an hourly analysis on an annual basis in chapter Four. This analysis allows the comparison of different systems and, eventually, a particular selection, and it includes both the economic and energetic components using the “greenius” software. The analysis also examined the impact of project financing and incentives on the cost of energy. The main technological finding of this analysis is higher performance and lower levelized cost of electricity (LCE) for Libya as compared to Southern Europe (Spain). Therefore, Libya has the potential of becoming attractive for the establishment of CSPs in its territory and, in this way, to facilitate the target of several European initiatives that aim to import electricity generated by renewable sources from North African and Middle East countries. The analysis is presented a brief review of the current cost of energy and the potential of reducing the cost from parabolic trough- CSP plant. Exergetic and environmental life cycle assessment analyses are conducted for the selected plant in chapter Five; the objectives are 1) to assess the environmental impact and cost, in terms of exergy of the life cycle of the plant; 2) to find out the points of weakness in terms of irreversibility of the process; and 3) to verify whether solar power plants can reduce environmental impact and the cost of electricity generation by comparing them with fossil fuel plants, in particular, Natural Gas Combined Cycle (NGCC) plant and oil thermal power plant. The analysis also targets a thermoeconomic analysis using the specific exergy costing (SPECO) method to evaluate the level of the cost caused by exergy destruction. The main technological findings are that the most important contribution impact lies with the solar field, which reports a value of 79%; and the materials with the vi highest impact are: steel (47%), molten salt (25%) and synthetic oil (21%). The “Human Health” damage category presents the highest impact (69%) followed by the “Resource” damage category (24%). In addition, the highest exergy demand is linked to the steel (47%); and there is a considerable exergetic demand related to the molten salt and synthetic oil with values of 25% and 19%, respectively. Finally, in the comparison with fossil fuel power plants (NGCC and Oil), the CSP plant presents the lowest environmental impact, while the worst environmental performance is reported to the oil power plant followed by NGCC plant. The solar field presents the largest value of cost rate, where the boiler is a component with the highest cost rate among the power cycle components. The thermal storage allows the CSP plants to overcome solar irradiation transients, to respond to electricity demand independent of weather conditions, and to extend electricity production beyond the availability of daylight. Numerical analysis of the thermal transient response of a thermocline storage tank is carried out for the charging phase. The system of equations describing the numerical model is solved by using time-implicit and space-backward finite differences and which encoded within the Matlab environment. The analysis presented the following findings: the predictions agree well with the experiments for the time evolution of the thermocline region, particularly for the regions away from the top-inlet. The deviations observed in the near-region of the inlet are most likely due to the high-level of turbulence in this region due to the localized level of mixing resulting; a simple analytical model to take into consideration this increased turbulence level was developed and it leads to some improvement of the predictions; this approach requires practically no additional computational effort and it relates the effective thermal diffusivity to the mean effective velocity of the fluid at each particular height of the system. Altogether the study indicates that the selected parabolic trough-CSP plant has the edge over alternative competing technologies for locations where DNI is high and where land usage is not an issue, such as the shoreline of Libya.
Resumo:
Traditional air delivery to high-bay buildings involves ceiling level supply and return ducts that create an almost-uniform temperature in the space. Problems with this system include potential recirculation of supply air and higher-than-necessary return air temperatures. A new air delivery strategy was investigated that involves changing the height of conventional supply and return ducts to have control over thermal stratification in the space. A full-scale experiment using ten vertical temperature profiles was conducted in a manufacturing facility over one year. The experimental data was utilized to validated CFD and EnergyPlus models. CFD simulation results show that supplying air directly to the occupied zone increases stratification while holding thermal comfort constant during the cooling operation. The building energy simulation identified how return air temperature offset, set point offset, and stratification influence the building’s energy consumption. A utility bill analysis for cooling shows 28.8% HVAC energy savings while the building energy simulation shows 19.3 – 37.4% HVAC energy savings.
Resumo:
This dissertation presents work done in the design, modeling, and fabrication of magnetically actuated microrobot legs. Novel fabrication processes for manufacturing multi-material compliant mechanisms have been used to fabricate effective legged robots at both the meso and micro scales, where the meso scale refers to the transition between macro and micro scales. This work discusses the development of a novel mesoscale manufacturing process, Laser Cut Elastomer Refill (LaCER), for prototyping millimeter-scale multi-material compliant mechanisms with elastomer hinges. Additionally discussed is an extension of previous work on the development of a microscale manufacturing process for fabricating micrometer-sale multi-material compliant mechanisms with elastomer hinges, with the added contribution of a method for incorporating magnetic materials for mechanism actuation using externally applied fields. As both of the fabrication processes outlined make significant use of highly compliant elastomer hinges, a fast, accurate modeling method for these hinges was desired for mechanism characterization and design. An analytical model was developed for this purpose, making use of the pseudo rigid-body (PRB) model and extending its utility to hinges with significant stretch component, such as those fabricated from elastomer materials. This model includes 3 springs with stiffnesses relating to material stiffness and hinge geometry, with additional correction factors for aspects particular to common multi-material hinge geometry. This model has been verified against a finite element analysis model (FEA), which in turn was matched to experimental data on mesoscale hinges manufactured using LaCER. These modeling methods have additionally been verified against experimental data from microscale hinges manufactured using the Si/elastomer/magnetics MEMS process. The development of several mechanisms is also discussed: including a mesoscale LaCER-fabricated hexapedal millirobot capable of walking at 2.4 body lengths per second; prototyped mesoscale LaCER-fabricated underactuated legs with asymmetrical features for improved performance; 1 centimeter cubed LaCER-fabricated magnetically-actuated hexapods which use the best-performing underactuated leg design to locomote at up to 10.6 body lengths per second; five microfabricated magnetically actuated single-hinge mechanisms; a 14-hinge, 11-link microfabricated gripper mechanism; a microfabricated robot leg mechansim demonstrated clearing a step height of 100 micrometers; and a 4 mm x 4 mm x 5 mm, 25 mg microfabricated magnetically-actuated hexapod, demonstrated walking at up to 2.25 body lengths per second.
Resumo:
Cold smoking method is one of the commonest ways for fish smoking. It is done by the smoke that is the result of burning hard and soft woods is smoking rooms. Smoke includes a number of chemical constructs and its main part is poly aromatic hydrocarbons. More than one hundred kinds of these constructs are recognized in smoke that is produced from saturated hydrocarbons resulted from the solution of the woods Ligno cellulose in high temperature and lack of oxygen conditions. The high poisoning potentials and carcinogenic features sixteen constructs among them are proved and observed on humans. In this research, the PAH compounds were identified and observed in a three month period after smoking and during storing among three types of smoked fishes Silver carp and Caspian sea Sefid and herring. They are the most produced and consumed smoked fish in Iran. To find the relationship between the concentrations of PAH constructs and the amount of lipid in fish, first, the amount of lipid were determined separately in the skin and flesh of 30 samples of each type. The method used was Bligh and Dyer (1959). PAH compounds derivation were made for all skin and flesh samples smoked fish using organic solvents with Soxeleh and the derived samples were injected to gas chromatography (GC) by Hamilton injectors for determining their components quality and their quantity. The height of the used column was 25 meters and its diameter was 0.32 mm with the silica filler, nitrogen gas as carrier and flame ionization detector (FID) that are special for these constructs. For data analysis, Statistical tests were used by computer soft ware identified that the difference in the amount of lipid within the flesh and skin of each species and also among each other is significant. The largest amount was in Herrings flesh and skin, 18.74% in skin and 14.47% in flesh. The least amount in the skin 4.19% and the flesh 3.10% of Sefid. The amount in Silver carp was 13.28%in skin and 8.16% in flesh. The examination of the PAH compounds in smoked fish showed that is carcinogenic compounds; exist in these in these fish with different quantities in each. It seems that its amount is directly related to the amount of their lipid. The amount is different in flesh and skin. One of the most important reasons is the direct content of smoke and the concentration of lipid in tissues of all three types. The maintenance of the smoked fish for three months showed that most of PAH compounds were solved and their density decreased. The changes in density within time in different in each type and in flesh and skin. The amount of their receiving in human through the consumption of the smoked fish depends on the resulted density, the way and the amount of consumption and now we can determine and execute standards for the maximum dosage per day and per month regarding effective factors.
Resumo:
A systematic study was conducted to elucidate the effects of acoustic perturbations on laminar diffusion line-flames and the conditions required to cause acoustically-driven extinction. Flames were produced from the fuels n-pentane, n-hexane, n-heptane, n-octane, and JP-8, using fuel-laden wicks. The wicks were housed inside of a burner whose geometry produced flames that approximated a two dimensional flame sheet. The acoustics utilized ranged in frequency between 30-50 Hz and acoustic pressures between 5-50 Pa. The unperturbed mass loss rate and flame height of the alkanes were studied, and they were found to scale in a linear manner consistent with Burke-Schumann. The mass loss rate of hexane-fueled flames experiencing acoustic perturbations was then studied. It was found that the strongest influence on the mass loss rate was the magnitude of oscillatory air movement experienced by the flame. Finally, acoustic perturbations were imposed on flames using all fuels to determine acoustic extinction criterion. Using the data collected, a model was developed which characterized the acoustic conditions required to cause flame extinction. The model was based on the ratio of an acoustic Nusselt Number to the Spalding B Number of the fuel, and it was found that at the minimum speaker power required to cause extinction this ratio was a constant. Furthermore, it was found that at conditions where the ratio was below this constant, a flame could still exist; at conditions where the ratio was greater than or equal to this constant, flame extinction always occurred.
Resumo:
We simulate currents and concentration profiles generated by Ca2+ release from the endoplasmic reticulum (ER) to the cytosol through IP3 receptor channel clusters. Clusters are described as conducting pores in the lumenal membrane with a diameter from 6 nm to 36 nm. The endoplasmic reticulum is modeled as a disc with a radius of 1–12 mm and an inner height of 28 nm. We adapt the dependence of the currents on the trans Ca2+ concentration (intralumenal) measured in lipid bilayer experiments to the cellular geometry. Simulated currents are compared with signal mass measurements in Xenopus oocytes. We find that release currents depend linearly on the concentration of free Ca2+ in the lumen. The release current is approximately proportional to the square root of the number of open channels in a cluster. Cytosolic concentrations at the location of the cluster range from 25 μM to 170 μM. Concentration increase due to puffs in a distance of a few micrometers from the puff site is found to be in the nanomolar range. Release currents decay biexponentially with timescales of < 1 s and a few seconds. Concentration profiles decay with timescales of 0.125–0.250 s upon termination of release.
Resumo:
Bathymetric data from a Hydrosweep multibeam sonar survey of a 720 km long tectonic corridor on the east flank of the southern EPR at 14 degrees 14'S covered about 25,000 km(2) of zero-age to 8.5 m.y. old crust (magnetic anomaly 4A). In this corridor we document a strong correlation of robust along flowline changes in abyssal hill morphology and seamount size distribution with spreading rate changes deduced from our magnetic data. Indeed, we find that both rms height of abyssal hills and abundance and height of seamounts increase significantly as spreading rate changes from similar to 75 mm/yr to over 85 mm/yr (half rate). Moreover, we identified 46 seamounts taller than 100 m. Previous studies on the southern EPR reported a larger density of seamounts, organized primarily in chains. Our investigation, however, revealed seamounts not associated with major chains, leading us to the conclusion that different forms of off-axis volcanism occur along the spreading center.
Resumo:
The aims of this thesis were evaluation the type of wave channel, wave current, and effect of some parameters on them and identification and comparison between types of wave maker in laboratory situations. In this study, designing and making of two dimension channels (flume) and wave maker for experiment son the marine buoy, marine building and energy conversion systems were also investigated. In current research, the physical relation between pump and pumpage and the designing of current making in flume were evaluated. The related calculation for steel building, channels beside glasses and also equations of wave maker plate movement, power of motor and absorb wave(co astal slope) were calculated. In continue of this study, the servo motor was designed and applied for moving of wave maker’s plate. One Ball Screw Leaner was used for having better movement mechanisms of equipment and convert of the around movement to linear movement. The Programmable Logic Controller (PLC) was also used for control of wave maker system. The studies were explained type of ocean energies and energy conversion systems. In another part of this research, the systems of energy resistance in special way of Oscillating Water Column (OWC) were explained and one sample model was designed and applied in hydrolic channel at the Sheikh Bahaii building in Azad University, Science and Research Branch. The dimensions of designed flume was considered at 16 1.98 0. 57 m which had ability to provide regular waves as well as irregular waves with little changing on the control system. The ability of making waves was evaluated in our designed channel and the results were showed that all of the calculation in designed flume was correct. The mean of error between our results and theory calculation was conducted 7%, which was showed the well result in this situation. With evaluating of designed OWC model and considering of changes in the some part of system, one bigger sample of this model can be used for designing the energy conversion system model. The obtained results showed that the best form for chamber in exit position of system, were zero degree (0) in angle for moving below part, forty and five (45) degree in front wall of system and the moving forward of front wall keep in two times of height of wave.
Resumo:
Southeast region of the country has hot and dry weather which causes to happen heavy rainfall in short time period of warm seasons and to occur river flooding. These precipitations are influenced by monsoon system of India ocean. In these thesis, It was tried to evaluate the relation between thermal anomaly of sea surface in India ocean and Arab sea which effects on southeast monsoon precipitations of Iran, For evaluation of this happening in southeast, data were collected from 7 synoptic observation stations of Bandar Abbas, Minab, Kerman , Bam, Chabahar, Iranshahr, Zahedan and 17 rain gauge stations during June to September of each year from 1980 to 2010. Rainy days were determine and then some information about synoptic circulation models, maps of average pressure of sea surface, geopotential height of 700hP surface, geopotential height of 500hP surface, temperature of 850 hPa surface, humidity of 700 hPa surface, vertical velocity of 700 hPa surface, vertical velocity of 500 hP and humidity of 2 meters height for 6 systems were extracted from NCEP/NCAR website for evaluation. By evaluation of these systems it was determined that the monsoon low pressure system tab brings needed humidity of these precipitations to this region from India ocean and Arab sea with a vast circulation. It is seen that warm air pool locates on Iran and cold air pool locates on west of India at 800 hPa surface. In a rainy day this warm air transfers to high latitudes and influences the temperature trough of southeast cold air pool of the country. In the middle surfaces of 700 and 500 hPa, the connection between low height system above India and low height system above the higher latitudes causes the low height system above India to be strength and developed. By evaluation of humidity at 2 meters height and 700 hPa surface we observe that humidity Increases in the southeast region. With penetrating of the low height system of India above the 700 and 500 hPa surfaces of southeast of Iran, the value of negative omega (Rising vertical velocity) is increased. In the second pace, it was shown the evaluation of how the correlation between sea surface temperature anomaly in India Ocean and Arab sea influences southeast monsoon precipitation of Iran. For this purpose the data of water surface temperature anomaly of Arab sea and India ocean, the data of precipitation anomaly of 7 synoptic stations , mentioned above, and correlation coefficient among the data of precipitation anomaly and water surface temperature anomaly of Arab Sea, east and west of India ocean were calculated. In conclusion it was shown that the maximum correlation coefficient of precipitation anomaly had belonged to India Ocean in June and no meaningful correlation was resulted in July among precipitation anomaly and sea surface temperature anomaly for three regions, which were evaluated.