955 resultados para heat kernel,worldline model,perturbative quantum gravity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

25th International Cryogenic Engineering Conference and the International Cryogenic Materials Conference in 2014, ICEC 25–ICMC 2014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is a study of how heat is transported in non-steady-state conditions from a superconducting Rutherford cable to a bath of superfluid helium (He II). The same type of superconducting cable is used in the dipole magnets of the Large Hadron Collider (LHC). The dipole magnets of the LHC are immersed in a bath of He II at 1.9 K. At this temperature helium has an extremely high thermal conductivity. During operation, heat needs to be efficiently extracted from the dipole magnets to keep their superconducting state. The thermal stability of the magnets is crucial for the operation of the LHC, therefore it is necessary to understand how heat is transported from the superconducting cables to the He II bath. In He II the heat transfer can be described by the Landau regime or by the Gorter-Mellink regime, depending on the heat flux. In this thesis both measurements and numerical simulation have been performed to study the heat transfer in the two regimes. A temperature increase of 8 2 mK of the superconducting cables was successfully measured experimentally. A new numerical model that covers the two heat transfer regimes has been developed. The numerical model has been validated by comparison with existing experimental data. A comparison is made between the measurements and the numerical results obtained with the developed model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[Excerpt] The advantages resulting from the use of numerical modelling tools to support the design of processing equipment are almost consensual. The design of calibration systems in profile extrusion is not an exception . H owever , the complex geome tries and heat exchange phenomena involved in this process require the use of numerical solvers able to model the heat exchange in more than one domain ( calibrator and polymer), the compatibilization of the heat transfer at the profile - calibrator interface and with the ability to deal with complex geometries. The combination of all these features is usually hard to find in commercial software. Moreover , the dimension of the meshes required to ob tain accurate results, result in computational times prohibitive for industrial application. (...)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We search for evidence of physics beyond the Standard Model in the production of final states with multiple high transverse momentum jets, using 20.3 fb−1 of proton-proton collision data recorded by the ATLAS detector at s√ = 8 TeV. No excess of events beyond Standard Model expectations is observed, and upper limits on the visible cross-section for non-Standard Model production of multi-jet final states are set. Using a wide variety of models for black hole and string ball production and decay, the limit on the cross-section times acceptance is as low as 0.16 fb at the 95% CL for a minimum scalar sum of jet transverse momentum in the event of about 4.3 TeV. Using models for black hole and string ball production and decay, exclusion contours are determined as a function of the production mass threshold and the gravity scale. These limits can be interpreted in terms of lower-mass limits on black hole and string ball production that range from 4.6 to 6.2 TeV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the temperature dependent magnetic susceptibility of a strained graphene quantum dot by using the determinant quantum Monte Carlo method. Within the Hubbard model on a honeycomb lattice, our unbiased numerical results show that a relative small interaction $U$ may lead to a edge ferromagnetic like behavior in the strained graphene quantum dot, and a possible room temperature transition is suggested. Around half filling, the ferromagnetic fluctuations at the zigzag edge is strengthened both markedly by the on-site Coulomb interaction and the strain, especially in low temperature region. The resultant strongly enhanced ferromagnetic like behavior may be important for the development of many applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The computation of the optical conductivity of strained and deformed graphene is discussed within the framework of quantum field theory in curved spaces. The analytical solutions of the Dirac equation in an arbitrary static background geometry for one dimensional periodic deformations are computed, together with the corresponding Dirac propagator. Analytical expressions are given for the optical conductivity of strained and deformed graphene associated with both intra and interbrand transitions. The special case of small deformations is discussed and the result compared to the prediction of the tight-binding model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Civil Engineering

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El presente proyecto plantea utilizar integralmente la técnica de Resonancia Magnética Nuclear en sólidos como un medio experimental que permite entender fenómenos de la física fundamental, como así también realizar aplicaciones de interés en el campo de la química, los desarrollos farmacéuticos y la biología. Novedosas técnicas experimentales serán empleadas, en conjunción con otras más tradicionales, en la caracterización de nuevas estructuras poliméricas acomplejadas a metales, membranas biológicas y compuestos de interés farmacéutico en vías de desarrollo, los cuales presentan el fenómeno de polimorfismo . Esto se llevará a cabo complementando los resultados de RMN en sólidos con técnicas tanto espectroscópicas como analíticas (Infrarrojo, Difracción de Rayos X, Calorimetría, RMN en solución) y trabajo interdisciplinario. Paralelamente al desarrollo de estos temas, profundizaremos mediante investigación básica, en la compresión de la dinámica cuántica y el surgimiento de la irreversibilidad en sistemas de espines nucleares. Observaremos en particular la generación, evolución y control de las coherencias cuánticas múltiples en sistemas cuánticos abiertos, lo cual nos da información sobre tamaño de clusters de espines. Esto permitirá la correcta implementación de secuencias de pulsos sofisticadas, como así también desarrollar nuevos métodos de medición aplicados a la caracterización estructural y a la dinámica molecular de sólidos complejos. Debemos resaltar que este proyecto está conectado con aspectos tanto básicos como aplicados de la RMN en sólidos como técnica experimental, la cual se desarrolla en el país únicamente en FaMAF-UNC. Se nutre además de trabajo multidisciplinario promoviendo la colaboración con investigadores y becarios de distintas áreas (física, química, farmacia, biología) provenientes de distintos puntos del país. Finalmente podemos afirmar que este plan impulsa la aplicación de la física básica proyectada a diferentes áreas del conocimiento, en el ámbito de la provincia de Córdoba. The aim of the present proyect is to use Nuclear Magnetic Resonance (NMR) as a complete techique that allows the understanding of fundamental physics phenomena and, at the same time, it leads to important applications in the fields of chemistry, pharmaceutical developments and biology. New experiments will be used together with traditional ones, in the characterization of new metal-polymer complexes, biological membranes and pharmaceutical compounds, some of them presenting polymorfism. NMR experiments will be complemented with diverse spectroscopic and analytical techniques: Infrared, X ray Diffraction, Thermal Analysis, solution NMR, as well as multidisciplinary investigation. Additionally, the present proyect plans to study in depth several aspects of quantum dynamics phenomena and decoherence in nuclear spin systems. The present proyect is connected with basic and applied aspects of the solid state NMR technique, developed in our country, only at FaMAF-UNC. It is is composed by multidisciplinary work and it promotes the collaboration with researchers and students coming from different fields (physics, chemistry, pharmaceutical developments, biology) and different points of our country.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aims of this project was to develop an arterial aneurysm using either enzymatic or laser degradation of the arterial wall without affecting the viability of the tissue and to cultivate the arteries under pulsatile flow conditions in a vascular bioreactor with a view to investigate the progress of the disease. Characteristics of aneurysms are the degradation of smooth muscle cells, collagen and elastin. Detached smooth muscle cells and degradation of the collagen matrix and elastin fibres were observed in arteries degraded with enzymes elastase and collagenase. Only remnants of the arterial wall were detected after cultivation. This might be a suitable model for late stage aneurysms. Arteries treated with the laser system showed no charring or heat damage of the not dissected area. Collagen matrix, smooth muscle cells and elastin fibres were intact. A clear defined cut was made in a depth of 200 μm and tissue was removed. Following cultivation of these arteries a dilation of the laser-eroded area was observed. This model can mimic atherosclerotic aneurysms, when plaques weaken the tunica media of the blood vessel wall and rupture. Limitations of this study were contamination of the bioreactor system and a low number of cultivations. The aim to generate a living arterial aneurysm in vitro was not achieved. Tissue viability decreased to the level of negative controls after cultivation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Variational steepest descent approximation schemes for the modified Patlak-Keller-Segel equation with a logarithmic interaction kernel in any dimension are considered. We prove the convergence of the suitably interpolated in time implicit Euler scheme, defined in terms of the Euclidean Wasserstein distance, associated to this equation for sub-critical masses. As a consequence, we recover the recent result about the global in time existence of weak-solutions to the modified Patlak-Keller-Segel equation for the logarithmic interaction kernel in any dimension in the sub-critical case. Moreover, we show how this method performs numerically in one dimension. In this particular case, this numerical scheme corresponds to a standard implicit Euler method for the pseudo-inverse of the cumulative distribution function. We demonstrate its capabilities to reproduce easily without the need of mesh-refinement the blow-up of solutions for super-critical masses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantum indeterminism is frequently invoked as a solution to the problem of how a disembodied soul might interact with the brain (as Descartes proposed), and is sometimes invoked in theories of libertarian free will even when they do not involve dualistic assumptions. Taking as example the Eccles-Beck model of interaction between self (or soul) and brain at the level of synaptic exocytosis, I here evaluate the plausibility of these approaches. I conclude that Heisenbergian uncertainty is too small to affect synaptic function, and that amplification by chaos or by other means does not provide a solution to this problem. Furthermore, even if Heisenbergian effects did modify brain functioning, the changes would be swamped by those due to thermal noise. Cells and neural circuits have powerful noise-resistance mechanisms, that are adequate protection against thermal noise and must therefore be more than sufficient to buffer against Heisenbergian effects. Other forms of quantum indeterminism must be considered, because these can be much greater than Heisenbergian uncertainty, but these have not so far been shown to play a role in the brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We summarize here the main characteristics of a novel model of pulmonary hypersensitivity. Mice were immunized with a subcutaneous implant of a fragment of heat solidified chicken egg white and 14 days later challenged with ovalbumin given either by aerosol or by intratracheal instillation. This procedure induces a persistent eosinophilic lung inflammation, a marked bone marrow eosinophilia, and Th2-type isotypic profile with histopathological findings that resemble human asthma. Further, this model is simple to perform, reproducible in different strains of mice, does not require adjuvants nor multiple boosters. Based on these characteristics we propose it as a suitable murine model of allergic eosinophilic lung inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper the two main drawbacks of the heat balance integral methods are examined. Firstly we investigate the choice of approximating function. For a standard polynomial form it is shown that combining the Heat Balance and Refined Integral methods to determine the power of the highest order term will either lead to the same, or more often, greatly improved accuracy on standard methods. Secondly we examine thermal problems with a time-dependent boundary condition. In doing so we develop a logarithmic approximating function. This new function allows us to model moving peaks in the temperature profile, a feature that previous heat balance methods cannot capture. If the boundary temperature varies so that at some time t & 0 it equals the far-field temperature, then standard methods predict that the temperature is everywhere at this constant value. The new method predicts the correct behaviour. It is also shown that this function provides even more accurate results, when coupled with the new CIM, than the polynomial profile. Analysis primarily focuses on a specified constant boundary temperature and is then extended to constant flux, Newton cooling and time dependent boundary conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to detect early molecular responses to various chemicals is central to the understanding of biological impact of pollutants in a context of varying environmental cues. To monitor stress responses in a model plant, we used transgenic moss Physcomitrella patens expressing the beta-glucuronidase reporter (GUS) under the control of the stress-inducible promoter hsp17.3B. Following exposure to pollutants from the dye and paper industry, GUS activity was measured by monitoring a fluorescent product. Chlorophenols, heavy metals and sulphonated anthraquinones were found to specifically activate the hsp17.3B promoter (within hours) in correlation with long-term toxicity effects (within days). At mildly elevated physiological temperatures, the chemical activation of this promoter was strongly amplified, which considerably increased the sensitivity of the bioassay. Together with the activation of hsp17.3B promoter, chlorophenols induced endogenous chaperones that transiently protected a recombinant thermolabile luciferase (LUC) from severe heat denaturation. This sensitive bioassay provides an early warning molecular sensor to industrial pollutants under varying environments, in anticipation to long-term toxic effects in plants. Because of the strong cross-talk between abiotic and chemical stresses that we find, this P. patens line is more likely to serve as a direct toxicity bioassay for pollutants combined with environmental cues, than as an indicator of absolute toxicity thresholds for various pollutants. It is also a powerful tool to study the role of heat shock proteins (HSPs) in plants exposed to combined chemical and environmental stresses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: We investigate a new heat delivery technique for the local treatment of solid tumors. The technique involves injecting a formulation that solidifies to form an implant in situ. This implant entraps superparamagnetic iron oxide nanoparticles (SPIONs) embedded in silica microbeads for magnetically induced moderate hyperthermia. Particle entrapment prevents phagocytosis and distant migration of SPIONs. The implant can be repeatedly heated by magnetic induction. Methods: We evaluated heating and treatment efficacies by means of thermometry and survival studies in nude mice carrying subcutaneous human colocarcinomas. At day 1, we injected the formulation into the tumor. At day 2, a single 20-min hyperthermia treatment was delivered by 141-kHz magnetic induction using field strengths of 9 to 12 mT under thermometry. Results: SPIONs embedded in silica microbeads were effectively confined within the implant at the injection site. Heat-induced necro-apoptosis was assessed by histology on day 3. On average, 12 mT resulted in tumor temperature of 47.8 degrees C, and over 70% tumor necrosis that correlated to the heat dose (AUC = 282 degrees C.min). In contrast, a 9-mT field strength induced tumoral temperature of 40 degrees C (AUC = 131 degrees C.min) without morphologically identifiable necrosis. Survival after treatment with 10.5 or 12 mT fields was significantly improved compared to non-implanted and implanted controls. Median survival times were 27 and 37 days versus 12 and 21 days respectively. Conclusion: Five of eleven mice (45%) of the 12 mT group survived one year without any tumor recurrence, holding promise for tumor therapy using magnetically induced moderate hyperthermia through injectable implants.