948 resultados para gas heating
Resumo:
The aim of the present study was to determine the ventilation/perfusion ratio that contributes to hypoxemia in pulmonary embolism by analyzing blood gases and volumetric capnography in a model of experimental acute pulmonary embolism. Pulmonary embolization with autologous blood clots was induced in seven pigs weighing 24.00 ± 0.6 kg, anesthetized and mechanically ventilated. Significant changes occurred from baseline to 20 min after embolization, such as reduction in oxygen partial pressures in arterial blood (from 87.71 ± 8.64 to 39.14 ± 6.77 mmHg) and alveolar air (from 92.97 ± 2.14 to 63.91 ± 8.27 mmHg). The effective alveolar ventilation exhibited a significant reduction (from 199.62 ± 42.01 to 84.34 ± 44.13) consistent with the fall in alveolar gas volume that effectively participated in gas exchange. The relation between the alveolar ventilation that effectively participated in gas exchange and cardiac output (V Aeff/Q ratio) also presented a significant reduction after embolization (from 0.96 ± 0.34 to 0.33 ± 0.17 fraction). The carbon dioxide partial pressure increased significantly in arterial blood (from 37.51 ± 1.71 to 60.76 ± 6.62 mmHg), but decreased significantly in exhaled air at the end of the respiratory cycle (from 35.57 ± 1.22 to 23.15 ± 8.24 mmHg). Exhaled air at the end of the respiratory cycle returned to baseline values 40 min after embolism. The arterial to alveolar carbon dioxide gradient increased significantly (from 1.94 ± 1.36 to 37.61 ± 12.79 mmHg), as also did the calculated alveolar (from 56.38 ± 22.47 to 178.09 ± 37.46 mL) and physiological (from 0.37 ± 0.05 to 0.75 ± 0.10 fraction) dead spaces. Based on our data, we conclude that the severe arterial hypoxemia observed in this experimental model may be attributed to the reduction of the V Aeff/Q ratio. We were also able to demonstrate that V Aeff/Q progressively improves after embolization, a fact attributed to the alveolar ventilation redistribution induced by hypocapnic bronchoconstriction.
Resumo:
The purpose of this Thesis is to find the most optimal heat recovery solution for Wärtsilä’s dynamic district heating power plant considering Germany energy markets as in Germany government pays subsidies for CHP plants in order to increase its share of domestic power production to 25 % by 2020. Different heat recovery connections have been simulated dozens to be able to determine the most efficient heat recovery connections. The purpose is also to study feasibility of different heat recovery connections in the dynamic district heating power plant in the Germany markets thus taking into consideration the day ahead electricity prices, district heating network temperatures and CHP subsidies accordingly. The auxiliary cooling, dynamical operation and cost efficiency of the power plant is also investigated.
Resumo:
Experimental models of sepsis-induced pulmonary alterations are important for the study of pathogenesis and for potential intervention therapies. The objective of the present study was to characterize lung dysfunction (low PaO2 and high PaCO2, and increased cellular infiltration, protein extravasation, and malondialdehyde (MDA) production assessed in bronchoalveolar lavage) in a sepsis model consisting of intraperitoneal (ip) injection of Escherichia coli and the protective effects of pentoxifylline (PTX). Male Wistar rats (weighing between 270 and 350 g) were injected ip with 10(7) or 10(9) CFU/100 g body weight or saline and samples were collected 2, 6, 12, and 24 h later (N = 5 each group). PaO2, PaCO2 and pH were measured in blood, and cellular influx, protein extravasation and MDA concentration were measured in bronchoalveolar lavage. In a second set of experiments either PTX or saline was administered 1 h prior to E. coli ip injection (N = 5 each group) and the animals were observed for 6 h. Injection of 10(7) or 10(9) CFU/100 g body weight of E. coli induced acidosis, hypoxemia, and hypercapnia. An increased (P < 0.05) cell influx was observed in bronchoalveolar lavage, with a predominance of neutrophils. Total protein and MDA concentrations were also higher (P < 0.05) in the septic groups compared to control. A higher tumor necrosis factor-alpha (P < 0.05) concentration was also found in these animals. Changes in all parameters were more pronounced with the higher bacterial inoculum. PTX administered prior to sepsis reduced (P < 0.05) most functional alterations. These data show that an E. coli ip inoculum is a good model for the induction of lung dysfunction in sepsis, and suitable for studies of therapeutic interventions.
Resumo:
A support ring of AISI 304L stainless steel that holds vertical, parallel wires arranged in a circle forming a cylinder is studied. The wires are attached to the ring with heat-induced shrinkage. When the ring is heated with a torch the heat affected zone tries to expand while the adjacent cool structure obstructs the expansion causing upsetting. During cooling, the ring shrinks smaller than its original size clamping the wires. The most important requirement for the ring is that it should be as round as possible and the deformations should occur as overall shrinkage in the ring diameter. A three-dimensional nonlinear transient sequential thermo-structural Abaqus model is used together with a Fortran code that enters the heat flux to each affected element. The local and overall deformations in one ring inflicted by the heating are studied with a small amount of inspection on residual stresses. A variety of different cases are chosen to be studied with the model constructed to provide directional knowledge; torch flux with the means of speed, location of the wires, heating location and structural factors. The decrease of heating speed increases heat flux that rises the temperature increasing shrinkage. In a single progressive heating uneven distribution of shrinkage appears to the start/end region that can be partially fixed with using speeded heating’s to strengthen the heating of that region. Location of the wires affect greatly to the caused shrinkage unlike heating location. The ring structure affects also greatly to the shrinkage; smaller diameter, bigger ring height, thinner thickness and greater number of wires increase shrinkage.
Resumo:
The global interest towards renewable energy production such as wind and solar energy is increasing, which in turn calls for new energy storage concepts due to the larger share of intermittent energy production. Power-to-gas solutions can be utilized to convert surplus electricity to chemical energy which can be stored for extended periods of time. The energy storage concept explored in this thesis is an integrated energy storage tank connected to an oxy-fuel combustion plant. Using this approach, flue gases from the plant could be fed directly into the storage tank and later converted into synthetic natural gas by utilizing electrolysis-methanation route. This work utilizes computational fluid dynamics to model the desublimation of carbon dioxide inside a storage tank containing cryogenic liquid, such as liquefied natural gas. Numerical modelling enables the evaluation of the transient flow patterns caused by the desublimation, as well as general fluid behaviour inside the tank. Based on simulations the stability of the cryogenic storage and the magnitude of the key parameters can be evaluated.
Resumo:
We analyzed the effects of saline infusion for the maintenance of blood volume on pulmonary gas exchange in ischemia-reperfusion syndrome during temporary abdominal aortic occlusion in dogs. We studied 20 adult mongrel dogs weighing 12 to 23 kg divided into two groups: ischemia-reperfusion group (IRG, N = 10) and IRG submitted to saline infusion for the maintenance of mean pulmonary arterial wedge pressure between 10 and 20 mmHg (IRG-SS, N = 10). All animals were anesthetized and maintained on spontaneous ventilation. After obtaining baseline measurements, occlusion of the supraceliac aorta was performed by the inflation of a Fogarty catheter. After 60 min of ischemia, the balloon was deflated and the animals were observed for another 60 min of reperfusion. The measurements were made at 10 and 45 min of ischemia, and 5, 30, and 60 min of reperfusion. Pulmonary gas exchange was impaired in the IRG-SS group as demonstrated by the increase of the alveolar-arterial oxygen difference (21 ± 14 in IRG-SS vs 11 ± 8 in IRG after 60 min of reperfusion, P = 0.004 in IRG-SS in relation to baseline values) and the decrease of oxygen partial pressure in arterial blood (58 ± 15 in IRG-SS vs 76 ± 15 in IRG after 60 min of reperfusion, P = 0.001 in IRG-SS in relation to baseline values), which was correlated with the highest degree of pulmonary edema in morphometric analysis (0.16 ± 0.06 in IRG-SS vs 0.09 ± 0.04 in IRG, P = 0.03 between groups). There was also a smaller ventilatory compensation of metabolic acidosis after the reperfusion. We conclude that infusion of normal saline worsened the gas exchange induced by pulmonary reperfusion injury in this experimental model.
Resumo:
Diplomityössä tarkastellaan lämmöntuotannon energiatehokkuuden parantamista neljässä Sotek- säätiön rakennuksessa. Työssä oli tarkoitus selvittää, minkälainen lämmitysjärjestelmä on juuri kyseiseen kiinteistöön järkevin ja investointikustannuksiltaan kannattava. Työssä käydään läpi polttoaineita, lämmöntuotanto- ja lämmönjakotapoja, sekä mietitään kannattaako rakennuksia lisäeristää. Työssä verrataan vanhojen järjestelmien hiilidioksidipäästöjä valittujen uusien järjestelmien hiilidioksidipäästöihin. Kiinteistöjen lämmitys tuottaa Suomessa noin 30 % kaikista hiilidioksidipäästöistä. Se on siis merkittävä alue, josta päästöjä voitaisiin vähentää. Tehtävänä oli laskea kaikille kiinteistöille tarkat lämmitystarpeet ja lämmitystehontarpeet käyttäen apuna Suomen rakennusmääräyskokoelmaa. Työn perusteella lämmöntuotannon energiatehokkuuden parantaminen kohteissa on järkevää ja taloudellisesti kannattavaa muuttamalla lämmöntuotanto pääosin lämpöpumpuille. Täystehoiset järjestelmät eivät tulleet investoinnillisesti kannattavaksi, eikä se ilmalämpöpumpuissa ollut edes mahdollista. Tulosten perusteella lämmitysenergian kustannuksia saatiin vähennettyä parhaiten mitoittamalla kohteisiin osatehoiset lämpöpumput. Lisälämmöneristäminen kohteissa ei taloudellisesti tullut kannattavaksi, vaikka lämmitystarve väheni. Lämmöntuotannon hiilidioksidipäästöt vähenisivät kohteissa keskimäärin noin 50 %.
Resumo:
Research on molecular mechanisms of carcinogenesis plays an important role in diagnosing and treating gastric cancer. Metabolic profiling may offer the opportunity to understand the molecular mechanism of carcinogenesis and help to non-invasively identify the potential biomarkers for the early diagnosis of human gastric cancer. The aims of this study were to explore the underlying metabolic mechanisms of gastric cancer and to identify biomarkers associated with morbidity. Gas chromatography/mass spectrometry (GC/MS) was used to analyze the serum metabolites of 30 Chinese gastric cancer patients and 30 healthy controls. Diagnostic models for gastric cancer were constructed using orthogonal partial least squares discriminant analysis (OPLS-DA). Acquired metabolomic data were analyzed by the nonparametric Wilcoxon test to find serum metabolic biomarkers for gastric cancer. The OPLS-DA model showed adequate discrimination between cancer and non-cancer cohorts while the model failed to discriminate different pathological stages (I-IV) of gastric cancer patients. A total of 44 endogenous metabolites such as amino acids, organic acids, carbohydrates, fatty acids, and steroids were detected, of which 18 differential metabolites were identified with significant differences. A total of 13 variables were obtained for their greatest contribution in the discriminating OPLS-DA model [variable importance in the projection (VIP) value >1.0], among which 11 metabolites were identified using both VIP values (VIP >1) and the Wilcoxon test. These metabolites potentially revealed perturbations of glycolysis and of amino acid, fatty acid, cholesterol, and nucleotide metabolism of gastric cancer patients. These results suggest that gastric cancer serum metabolic profiling has great potential in detecting this disease and helping to understand its metabolic mechanisms.
Resumo:
The main purpose of this study was to investigate the level of agreement between the gas exchange threshold (GET) and heart rate variability threshold (HRVT) during maximal cardiopulmonary exercise testing (CPET) using three different exercise modalities. A further aim was to establish whether there was a 1:1 relationship between the percentage heart rate reserve (%HRR) and percentage oxygen uptake reserve (%V˙O2R) at intensities corresponding to GET and HRVT. Sixteen apparently healthy men 17 to 28 years of age performed three maximal CPETs (cycling, walking, and running). Mean heart rate and V˙O2 at GET and HRVT were 16 bpm (P<0.001) and 5.2 mL·kg-1·min-1 (P=0.001) higher in running than cycling, but no significant differences were observed between running and walking, or cycling and walking (P>0.05). There was a strong relationship between GET and HRVT, with R2 ranging from 0.69 to 0.90. A 1:1 relationship between %HRR and %V˙O2R was not observed at GET and HRVT. The %HRR was higher during cycling (GET mean difference=7%; HRVT mean difference=11%; both P<0.001), walking (GET mean difference=13%; HRVT mean difference=13%; both P<0.001), or running (GET mean difference=11%; HRVT mean difference=10%; both P<0.001). Therefore, using HRVT to prescribe aerobic exercise intensity appears to be valid. However, to assume a 1:1 relationship between %HRR and %V˙O2R at HRVT would probably result in overestimation of the energy expenditure during the bout of exercise.
Resumo:
The growing population in cities increases the energy demand and affects the environment by increasing carbon emissions. Information and communications technology solutions which enable energy optimization are needed to address this growing energy demand in cities and to reduce carbon emissions. District heating systems optimize the energy production by reusing waste energy with combined heat and power plants. Forecasting the heat load demand in residential buildings assists in optimizing energy production and consumption in a district heating system. However, the presence of a large number of factors such as weather forecast, district heating operational parameters and user behavioural parameters, make heat load forecasting a challenging task. This thesis proposes a probabilistic machine learning model using a Naive Bayes classifier, to forecast the hourly heat load demand for three residential buildings in the city of Skellefteå, Sweden over a period of winter and spring seasons. The district heating data collected from the sensors equipped at the residential buildings in Skellefteå, is utilized to build the Bayesian network to forecast the heat load demand for horizons of 1, 2, 3, 6 and 24 hours. The proposed model is validated by using four cases to study the influence of various parameters on the heat load forecast by carrying out trace driven analysis in Weka and GeNIe. Results show that current heat load consumption and outdoor temperature forecast are the two parameters with most influence on the heat load forecast. The proposed model achieves average accuracies of 81.23 % and 76.74 % for a forecast horizon of 1 hour in the three buildings for winter and spring seasons respectively. The model also achieves an average accuracy of 77.97 % for three buildings across both seasons for the forecast horizon of 1 hour by utilizing only 10 % of the training data. The results indicate that even a simple model like Naive Bayes classifier can forecast the heat load demand by utilizing less training data.
Resumo:
The monitoring and control of hydrogen sulfide (H2S) level is of great interest for a wide range of application areas including food quality control, defense and antiterrorist applications and air quality monitoring e.g. in mines. H2S is a very poisonous and flammable gas. Exposure to low concentrations of H2S can result in eye irritation, a sore throat and cough, shortness of breath, and fluid retention in the lungs. These symptoms usually disappear in a few weeks. Long-term, low-level exposure may result in fatigue, loss of appetite, headache, irritability, poor memory, and dizziness. Higher concentrations of 700 - 800 ppm tend to be fatal. H2S has a characteristic smell of rotten egg. However, because of temporary paralysis of olfactory nerves, the smelling capability at concentrations higher than 100 ppm is severely compromised. In addition, volatile H2S is one of the main products during the spoilage of poultry meat in anaerobic conditions. Currently, no commercial H2S sensor is available which can operate under anaerobic conditions and can be easily integrated in the food packaging. This thesis presents a step-wise progress in the development of printed H2S gas sensors. Efforts were made in the formulation, characterization and optimization of functional printable inks and coating pastes based on composites of a polymer and a metal salt as well as a composite of a metal salt and an organic acid. Different processing techniques including inkjet printing, flexographic printing, screen printing and spray coating were utilized in the fabrication of H2S sensors. The dispersions were characterized by measuring turbidity, surface tension, viscosity and particle size. The sensing films were characterized using X-ray photoelectron spectroscopy, X-ray diffraction, atomic force microscopy and an electrical multimeter. Thin and thick printed or coated films were developed for gas sensing applications with the aim of monitoring the H2S concentrations in real life applications. Initially, a H2S gas sensor based on a composite of polyaniline and metal salt was developed. Both aqueous and solvent-based dispersions were developed and characterized. These dispersions were then utilized in the fabrication of roll-to-roll printed H2S gas sensors. However, the humidity background, long term instability and comparatively lower detection limit made these sensors less favourable for real practical applications. To overcome these problems, copper acetate based sensors were developed for H2S gas sensing. Stable inks with excellent printability were developed by tuning the surface tension, viscosity and particle size. This enabled the formation of inkjet-printed high quality copper acetate films with excellent sensitivity towards H2S. Furthermore, these sensors showed negligible humidity effects and improved selectivity, response time, lower limit of detection and coefficient of variation. The lower limit of detection of copper acetate based sensors was further improved to sub-ppm level by incorporation of catalytic gold nano-particles and subsequent plasma treatment of the sensing film. These sensors were further integrated in an inexpensive wirelessly readable RLC-circuit (where R is resistor, L is inductor and C is capacitor). The performance of these sensors towards biogenic H2S produced during the spoilage of poultry meat in the modified atmosphere package was also demonstrated in this thesis. This serves as a proof of concept that these sensors can be utilized in real life applications.
Resumo:
This thesis is done as a part of the NEOCARBON project. The aim of NEOCARBON project is to study a fully renewable energy system utilizing Power-to-Gas or Power-to-Liquid technology for energy storage. Power-to-Gas consists of two main operations: Hydrogen production via electrolysis and methane production via methanation. Methanation requires carbon dioxide and hydrogen as a raw material. This thesis studies the potential carbon dioxide sources within Finland. The different sources are ranked using the cost and energy penalty of the carbon capture, carbon biogenity and compatibility with Power-to-Gas. It can be concluded that in Finland there exists enough CO2 point sources to provide national PtG system with sufficient amounts of carbon. Pulp and paper industry is single largest producer of biogenic CO2 in Finland. It is possible to obtain single unit capable of grid balancing operations and energy transformations via Power-to-Gas and Gas-to-Power by coupling biogas plants with biomethanation and CHP units.
Resumo:
Solar and wind power produce electricity irregularly. This irregular power production is problematic and therefore production can exceed the need. Thus sufficient energy storage solutions are needed. Currently there are some storages, such as flywheel, but they are quite short-term. Power-to-Gas (P2G) offers a solution to store energy as a synthetic natural gas. It also improves nation’s energy self-sufficiency. Power-to-Gas can be integrated to an industrial or a municipal facility to reduce production costs. In this master’s thesis the integration of Power-to-Gas technologies to wastewater treatment as a part of the VTT’s Neo-Carbon Energy project is studied. Power-to-Gas produces synthetic methane (SNG) from water and carbon dioxide with electricity. This SNG can be considered as stored energy. Basic wastewater treatment technologies and the production of biogas in the treatment plant are studied. The utilisation of biogas and SNG in heat and power production and in transportation is also studied. The integration of the P2G to wastewater treatment plant (WWTP) is examined mainly from economic view. First the mass flows of flowing materials are calculated and after that the economic impact based on the mass flows. The economic efficiency is evaluated with Net Present Value method. In this thesis it is also studied the overall profitability of the integration and the key economic factors.
Resumo:
Origanum vulgare L. (oregano), Lamiaceae, essential oil has a variety of biological properties and its antimicrobial activity has received a renewed interest for use in food conservation. The aim of this study was to evaluate the interference of heating on the antimicrobial activity and chemical composition of O. vulgare essential oil. The antimicrobial activity of the essential oil kept at room temperature and exposed to different heating temperatures (60, 80, 100 and 120 °C during 1 hour) was evaluated by observing antimicrobial effectiveness at absolute concentration and determining MIC values by the solid medium diffusion procedure. The essential oil chemical composition analysis was performed by GC-MS. O. vulgare essential oil showed interesting antimicrobial activity on all assayed microbial strains (Candida albicans, C.krusei, C. tropicalis, Bacillus cereus, Escherichia coli, Staphylococcus aureus, Yersinia enterocolitica, Salmonella enterica, Serratia marcencens), noted by large growth inhibition zones (30-42 mm). Heating treatment showed no significant interference (p < 0.05) on the essential oil antimicrobial activity, noted by the development of microbial growth inhibition zones with similar or close diameters when evaluating the essential oil kept at room temperature and after exposure to different thermal treatments. MIC values oscillated between 10and 40 µL.mL-1 (20µL.mL-1 for most strains). However, no significant difference (p < 0.05) was noted among the MIC values found for the essential oil aliquots exposed to different temperatures. Moreover, heating did not significantly (p < 0.05) affect the chemical composition of O. vulgare essential oil. Monoterpenes, terpenic compounds and sesquiterpenes were found in the essential oil, with carvacrol (68.06-70.27%) and p-cymene (12.85-15.81%) being the compounds found in the highest amounts. These results showed the thermal stability and intense antimicrobial properties of O. vulgare essential oil and support its possible concomitant use with heating temperatures in order to reach microbial safety in foods.
Resumo:
Alfa Laval Aalborg Oy designs and manufactures waste heat recovery systems utilizing extended surfaces. The waste heat recovery boiler considered in this thesis is a water-tube boiler where exhaust gas is used as the convective heat transfer medium and water or steam flowing inside the tubes is subject to cross-flow. This thesis aims to contribute to the design of waste heat recovery boiler unit by developing a numerical model of the H-type finned tube bundle currently used by Alfa Laval Aalborg Oy to evaluate the gas-side heat transfer performance. The main objective is to identify weaknesses and potential areas of development in the current H-type finned tube design. In addition, numerical simulations for a total of 15 cases with varying geometric parameters are conducted to investigate the heat transfer and pressure drop performance dependent on H-type fin geometry. The investigated geometric parameters include fin width and height, fin spacing, and fin thickness. Comparison between single and double tube type configuration is also conducted. Based on the simulation results, the local heat transfer and flow behaviour of the H-type finned tube is presented including boundary layer development between the fins, the formation of recirculation zone behind the tubes, and the local variations of flow velocity and temperature within the tube bundle and on the fin surface. Moreover, an evaluation of the effects of various fin parameters on heat transfer and pressure drop performance of H-type finned tube bundle has been provided. It was concluded that from the studied parameters fin spacing and fin width had the most significant effect on tube bundle performance and the effect of fin thickness was the least important. Furthermore, the results suggested that the heat transfer performance would increase due to enhanced turbulence if the current double tube configuration is replaced with single tube configuration, but further investigation and experimental measurements are required in order to validate the results.