985 resultados para gas atmosphere
Resumo:
The reaction of 2-formylbenzenesulfonyl chloride 1 and its pseudo isomer 2 with primary amines give either the corresponding sulfonamido Schiff bases or the corresponding 2-formylbenzenesulfonamide depending on the concentration of the amine used. The derivatives exist as an equilibrium mixture of the corresponding sulfonamide and 2-alkyl-3-hydroxy(or 3-aminoalkyl)-benzisothiazole-1,1-dioxide. Spectroscopic studies suggest that 2-formylbenzenesulfonamides exist as benzisothiazole-1,1-dioxides in the solid state, as a mixture of 2-formylbenzenesulfonamide and the corresponding benzisothiazole-1,1-dioxide in solution and as 2-formyl-benzenesulfonamides in the gas phase.
Resumo:
Star formation properties in Giant Extragalactic H II Regions (GEHRs) are investigated using optical photometry and evolutionary population synthesis models. Photometric data in $BVR$ bands and in the emission line of H-alpha are obtained by CCD imaging at Vainu Bappu Observatory, Kavalur. Aperture photometry is performed for 180 GEHRs in galaxies NGC 1365, 1566, 2366, 2903, 2997, 3351, 4303, 4449, 4656 and 5253. Thirty six of these GEHRs having published spectroscopic data are studied for star formation properties. The population synthesis model is constructed based on Maeder's stellar evolutionary and Kurucz stellar atmosphere models, to synthesize observational quantities of embedded clusters in GEHRs. The observed H-alpha luminosity is a measure of the number of massive stars while the contribution to BVR bands is from intermediate mass (5-15 solar mass) stars when the cluster is young and from evolving supergiants when the cluster is old (age >/= 6~Myr). Differential reddening between gas and embedded stars is essential to constrain the dereddened cluster colors within the range of youngest clusters. Obscuring dust closely associated with gas, which is distributed in filaments and clumps, as in the case of 30 Doradus, is the most likely configuration giving rise to net reduction of extinction towards stars. The fraction of the stellar photons escaping the nebula unattenuated is estimated to be 50%. GEHRs are rarely found to be simple systems containing stars from single generation. In the present sample such regions in addition to being older than 3~Myr, have their Lyman continuum luminosity reduced by as much as 60%, compared to the observed $B$ band luminosity for a normal IMF. The missing ionizing photons may be escaping the nebula, leading to the ionization of extra-H II region ionized medium. Co-existence of young (age = 5 Myr; stars producing ionizing photons) and old populations (~10~Myr; Red Supergiants) is found to be common in GEHRs. The emission and continuum knots are seen spatially separated (40-100 pc) on CCD images in NGC 2997, 4303 and 4449 and may be direct evidences for the co-existence of young and old populations in giant star forming complexes. Triggering of star formation from earlier bursts is the most likely cause of new generation of stars, and may be a common phenomenon in GEHRs. Spatial separation between the young and old stars (~30 pc) had been earlier reported in 30 Doradus. Thus GEHRs in nearby galaxies share many of the properties shown by 30 Dor, the nearest GEHR. (SECTION: Dissertation Summaries)
Resumo:
The gasification of charcoal spheres in an atmosphere of carbon-dioxide-nitrogen mixture involving diffusion and reactions in the pores is modelled and the results are compared with experiments of Standish and Tanjung and those performed in the laboratory on wood-char spheres to determine the effects of diameter, density, gas composition and flow. The results indicate that the conversion time, t(c) approximately d1.03 for large particles (> 5 mm), departing substantially from the t(c) approximately d2 law valid for diffusion limited conditions. The computational studies indicate that the kinetic limit for the particle is below 100 mum. The conversion time varies inversely as the initial char density as expected in the model. Predictions from the model show that there is no significant change in conversion time up to 60% N2 consistent with the CO2-N2 experiments. The variation of diameter and density with time are predicted. The peculiar dependence of conversion time on flow velocity in the experiments is sought to be explained by opposing free and forced convection heat transfer and the attempt is only partly successful. The studies also indicate that the dependence on the CO concentration with low CO2 is significant, indicating the need for multistep reaction mechanism against the generally accepted single-step reaction.
Resumo:
The thermal degradation products of two sulfur polymers, poly(styrenedisulfide) (PSD) and poly(styrenetetrasulfide) (PST), were investigated in parallel by direct pyrolysis-mass spectrometry (DPMS) and by flash pyrolysis-GC/MS (Py-GC/MS). The time-scale of the two pyrolysis techniques is quite different, and therefore they were able to detect significantly different products in the pyrolysis of PSD and PST because of the thermal lability of sulfur-containing compounds. However, the results obtained are not contradictory, and satisfactory mechanisms for the thermal degradation of PSD and PST have been derived from the overall evidence available. Pyrolysis compounds containing sulfur, styrene, and a number of cyclic styrene sulfides and diphenyldithianes have been observed by DPMS. However, in flash pyrolysis-GC/MS, styrene, sulfur, only one cyclic styrene sulfide, and two isomers of diphenylthiophene have been detected. These thiophene derivatives were indeed absent among the compounds obtained by DPMS because they were the terminal (most thermally stable) species arising from further decomposition of the cyclic styrene sulfides formed in the primary thermal degradation processes of PSD and PST.
Resumo:
The paper presents the importance of the Nocturnal Boundary Layer in driving the diurnal variability of the atmospheric CO2 mixing ratio and the carbon isotope ratio at ground level from an urban station in India. Our observations are the first of their kind from this region. The atmospheric CO2 mixing ratio and the carbon isotopic ratio were measured for both the morning (05:30-07:30 IST) and afternoon time (16:00-18:00 IST) air samples at 5 m above ground level in Bangalore city, Karnataka State (12 degrees 58' N, 77 degrees 38' E, masl = 920 m) for a 10 day period during the winter of 2008. We observed a change of similar to 7% the in CO2 mixing ratio between the morning and afternoon time air samples. A stable isotope analysis of CO2 from morning samples showed a depletion in the carbon isotope ratio by similar to 2 parts per thousand compared to the afternoon samples. Along with the ground-based measurement of air samples, data of radiosonde measurements were also obtained from the Indian Meteorological Department to identify the vertical atmospheric structure at different time in a day. We proposed the presence or absence of the NBL as a controlling factor for the observed variability in the mixing ratio as well as its isotopic composition. Here we used the Keeling model approach to find out the carbon isotope ratio for the local sources. The local sources have further been characterized as anthropogenic and biological respiration (in %) using a two-component mixing model. We also used a vertical mixing model based on the concept of the mixing of isotopically depleted (carbon isotope) ``polluted air'' (PA) with isotopically enriched ``free atmospheric air'' (FA) above. Using this modeling approach, the contribution of FA at ground level is being estimated for both the morning and afternoon time air samples.
Resumo:
Isoactivity lines for carbon with respect to diamond as the standard state have been calculated in the ternary system C-H-O at 1223 K to identify the diamond deposition domain. The gas composition is calculated by suppressing the formation of all condensed forms of carbon using the SOLGASMIX free-energy minimization program. Thirty six gas species were included in the calculation. From the gas composition, isoactivity lines are computed using recent data on the Gibbs energy of diamond. Except for activities less than 0.1, the isoactivity lines are almost linear on the C-H-O ternary diagram. Gas compositions which generate activity of diamond ranging from 1 to 100 at 1223 K fall inside a narrow wedge originating from the point representing CO. This wedge is very similar to the revised lens-shaped diamond growth domain identified by Bachman et al., using inputs from experiment. The small difference between the calculated and observed domains may be attributed to variation in the supersaturation required for diamond deposition with gas composition. The diamond solubility in the gas phase along the isoactivity line for a(di)=100 and P=6.7 kPa exhibits a minimum at 1280 K, which is close to the optimum temperature found experimentally. At higher supersaturations, non-diamond forms of carbon, including amorphous varieties, are expected. The results suggest that thermodynamic calculations can be useful for locating diamond growth domains in more complex CVD systems containing halogens, for which very little experimental data is available.
Resumo:
Nucleation at large metastability is still largely an unsolved problem, even though it is a problem of tremendous current interest, with wide-ranging practical value, from atmospheric research to materials science. It is now well accepted that the classical nucleation theory (CNT) fails to provide a qualitative picture and gives incorrect quantitative values for such quantities as activation-free energy barrier and supersaturation dependence of nucleation rate, especially at large metastability. In this paper, we present an alternative formalism to treat nucleation at large supersaturation by introducing an extended set of order parameters in terms of the kth largest liquid-like clusters, where k = 1 is the largest cluster in the system, k = 2 is the second largest cluster and so on. At low supersaturation, the size of the largest liquid-like cluster acts as a suitable order parameter. At large supersaturation, the free energy barrier for the largest liquid-like cluster disappears. We identify this supersaturation as the one at the onset of kinetic spinodal. The kinetic spinodal is system-size-dependent. Beyond kinetic spinodal many clusters grow simultaneously and competitively and hence the nucleation and growth become collective. In order to describe collective growth, we need to consider the full set of order parameters. We derive an analytic expression for the free energy of formation of the kth largest cluster. The expression predicts that, at large metastability (beyond kinetic spinodal), the barrier of growth for several largest liquid-like clusters disappears, and all these clusters grow simultaneously. The approach to the critical size occurs by barrierless diffusion in the cluster size space. The expression for the rate of barrier crossing predicts weaker supersaturation dependence than what is predicted by CNT at large metastability. Such a crossover behavior has indeed been observed in recent experiments (but eluded an explanation till now). In order to understand the large numerical discrepancy between simulation predictions and experimental results, we carried out a study of the dependence on the range of intermolecular interactions of both the surface tension of an equilibrium planar gas-liquid interface and the free energy barrier of nucleation. Both are found to depend significantly on the range of interaction for the Lennard-Jones potential, both in two and three dimensions. The value of surface tension and also the free energy difference between the gas and the liquid phase increase significantly and converge only when the range of interaction is extended beyond 6-7 molecular diameters. We find, with the full range of interaction potential, that the surface tension shows only a weak dependence on supersaturation, so the reason for the breakdown of CNT (with simulated values of surface tension and free energy gap) cannot be attributed to the supersaturation dependence of surface tension. This remains an unsettled issue at present because of the use of the value of surface tension obtained at coexistence.
Investigations Of Iron Adducts Of C-60 - Novel Fec60 In The Solid-State With Fe Inside The C-60 Cage
Resumo:
By carrying out contact-arc vaporization of graphite in a partial atmosphere of Fe(CO)5, an iron-adduct with C60 has been obtained. The adduct has been characterized by various techniques including mass spectrometry, Fe-57 Mossbauer spectroscopy and Fe K-EXAFS. Properties of this adduct are compared with those of an adduct prepared by solution method where Fe is clearly outside the cage. Results suggest that FeC60 obtained from the gas phase reaction has the Fe atom in the cage.
Resumo:
It has recently been proposed that the broad spectrum of interannual variability in the tropics with a peak around four years results from an interaction between the linear low-frequency oscillatory mode of the coupled system and the nonlinear higher-frequency modes of the system. In this study we determine the bispectrum of the conceptual model consisting of a nonlinear low-order model coupled to a linear oscillator for various values of the coupling constants.
Resumo:
Polypyrrole exhibits reversible changes in their direct current resistance on exposure to organic volatiles. However, one needs to employ an array of such sensors to discriminate organic volatiles present in a mixture. Hence, polypyrrole based gas sensor is designed for the detection and discrimination of different organic volatiles. Multi frequency impedance measurement technique is used to detect the organic vapors, such as acetone, ethanol and Isopropyl alcohol, in the gas phase, over a frequency range 10 Hz to 2 MHz. The sensor response is monitored by measuring the changes in its capacitance, resistance and the dissipation factor upon exposure to organic volatiles. It is observed that the capacitive property of the sensor is more sensitive to these volatiles than its resistive property. Each volatile responds to the sensor in terms of dissipation factor at specific frequency and found that the peak magnitude has a linear relationship with their concentrations.
Resumo:
The design of a solid electrolyte that permits the use of dissimilar gas electrodes in an electrochemical cell is presented. It consists of a functionally gradient material with spatial variation in composition. The activity of the conducting ion is fixed at each electrode using different gas species. The system chosen for demonstrating the concept consists of a solid solution between K2CO3 and K2SO4. The composition of the solid solution varies from pure K2CO3 in contact with a CO2 + O2 gas mixture at one electrode to pure K2SO4 exposed to a mixture of SO3 + SO2 + O2 at the other. Two types of composition profiles are studied, one with monotonic variation in composition and the other with extrema. The e.m.f. of the cells is studied as a function of temperature and composition of the gas mixture at each electrode. The results indicate that the e.m.f. is determined primarily by the difference in the chemical potential of potassium at the two electrodes. The diffusion potential caused by ionic concentration gradients in the electrolyte appears to be negligible when the corresponding ionic transport numbers are insignificant. Studies on the response characteristics of the cell based on the gradient electrolyte indicate that the nature of the variation in composition of the electrolyte has only a minor effect on the time evolution of e.m.f. The gradient solid electrolytes have potential application in multielement galvanic sensors at high temperatures.
Resumo:
We present a study of the growth of local, nonaxisymmetric perturbations in gravitationally coupled stars and gas in a differentially rotating galactic disk. The stars and gas are treated as two isothermal fluids of different velocity dispersions, with the stellar velocity dispersion being greater than that for the gas. We examine the physical effects of inclusion of a low-velocity dispersion component (gas) on the growth of non-axisymmetric perturbations in both stars and gas, as done for the axisymmetric case by Jog & Solomon. The amplified perturbations in stars and gas constitute trailing, material, spiral features which may be identified with the local spiral features seen in all spiral galaxies. The formulation of the two-fluid equations closely follows the one-fluid treatment by Goldreich & Lynden-Bell. The local, linearized perturbation equations in the sheared frame are solved to obtain the results for a temporary growth via swing amplification. The problem is formulated in terms of five dimensionless parameters-namely, the Q-factors for stars and gas, respectively; the gas mass fraction; the shearing rate in the galactic disk; and the length scale of perturbation. By using the observed values of these parameters, we obtain the amplifications and the pitch angles for features in stars and gas for dynamically distinct cases, as applicable for different regions of spiral galaxies. A real galaxy consisting of stars and gas may display growth of nonaxisymmetric perturbations even when it is stable against axisymmetric perturbations and/or when either fluid by itself is stable against non-axisymmetric perturbations. Due to its lower velocity dispersion, the gas exhibits a higher amplification than do the stars, and the amplified gas features are slightly more tightly wound than the stellar features. When the gas contribution is high, the stellar amplification and the range of pitch angles over which it can occur are both increased, due to the gravitational coupling between the two fluids. Thus, the two-fluid scheme can explain the origin of the broad spiral arms in the underlying old stellar populations of galaxies, as observed by Schweizer and Elmegreen & Elmegreen. The arms are predicted to be broader in gas-rich galaxies, as is indeed seen for example in M33. In the linear regime studied here, the arm contrast is shown to increase with radius in the inner Galaxy, in agreement with observations of external galaxies by Schweizer. These results follow directly due to the inclusion of gas in the problem.
Resumo:
Measured health signals incorporate significant details about any malfunction in a gas turbine. The attenuation of noise and removal of outliers from these health signals while preserving important features is an important problem in gas turbine diagnostics. The measured health signals are a time series of sensor measurements such as the low rotor speed, high rotor speed, fuel flow, and exhaust gas temperature in a gas turbine. In this article, a comparative study is done by varying the window length of acausal and unsymmetrical weighted recursive median filters and numerical results for error minimization are obtained. It is found that optimal filters exist, which can be used for engines where data are available slowly (three-point filter) and rapidly (seven-point filter). These smoothing filters are proposed as preprocessors of measurement delta signals before subjecting them to fault detection and isolation algorithms.
Resumo:
Gas-phase controlled absorption of ammonia in foams made of solutions of sulphuric acid has been studied experimentally. Effects of gas-phase concentration of ammonia and type of surfactant on the performance of the foam-bed reactor are investigated. Gas-phase controlled absorption from a spherical bubble is anaylzed using the asymptotic value of Sherwood number (Sh = 6.58), for both negligible as well as significant changes in the volume of the bubble. The experimental data are shown to be in good agreement with the single-stage model of the foam-bed reactor using these asymptotic sub-models, as well as the diffusion-in-sphere analysis available in literature. Influence of effective diffusivity on the time dependence of fractional gas absorption has been found to be unimportant for foam columns with large times of contact. The asymptotic sub-models have been compared and use of the rigid-sphere asymptotic sub-model is recommended for foam columns of practical relevence.