960 resultados para fish feeding
Resumo:
Humic lakes are abundant in the temperate and cold regions of the Boreal Zone. High levels of water colour and strong thermal stratification of humic lakes limit the potential fish habitats and give a special role to the intraspecific and interspecific interactions. Water colour has different effects on species depending on species-specific life-history traits and trophic interactions. Fish species whose success in predation is based on visual cues are more susceptible to suffer in competition. The main aim of the thesis was to demonstrate the effects of water colour on European perch (Perca fluviatilis) in humic lakes. The contribution of water colour to diet, feeding, growth and competitive interactions of fish was studied both in laboratory and in small humic lakes with varying levels of water colour. The main findings of the thesis were that water colour has different effects on species, depending on species-specific life-history traits and trophic interactions. Water colour affected visually-oriented perch feeding and growth negatively, and the prolonged benthic feeding phase of perch resulting from the increased water colour could increase intraspecific competition in perch populations and may result in a partial bottleneck in growth for perch. Moreover, water colour may act as a proximate factor behind the population dependency of sexual growth dimorphism in perch.
Resumo:
"In rats, sucking milk reduces anxiety and promotes non-rapid eye movement (NREM) sleep, and in calves it induces resting but the effect on sleep is unknown. Here, we investigated how calves' sleep was affected by colostrum feeding methods. Forty-one calves were blocked by birth date and randomly allotted within blocks to the experimental treatments. Calves were housed for four days either with their dam (DAM) or individually with warm colostrum feeding (2 L four times a day) from either a teat bucket (TEAT) or an open bucket (BUCKET). DAM calves suckled their dam freely. Calves' sleeping and sucking behaviour was filmed continuously for 48 h at the ages of two and three days. Behavioural sleep (BS) was defined as calves resting at least 30 s with their head still and raised (non-rapid eye movement) or with their head against their body or the ground (rapid eye movement, REM). Latency from the end of colostrum feeding to the start of BS was recorded. We compared behaviour of TEAT calves with that of DAM and BUCKET calves using mixed models. Milk meal duration was significantly longer for TEAT calves than for BUCKET calves (mean +/- S.E.M.; 8.3 +/- 0.6 min vs. 5.2 +/- 0.6 min), but equal to that of DAM calves. We found no effect of feeding method on the duration of daily BS (12 h 59 min I h 38 min) but we found a tendency for the daily amount of NREM sleep; BUCKET calves had less NREM sleep per day than TEAT calves (6 h 18 min vs. 7 h 48 min, S.E.M. = 45 min) and also longer latencies from milk ingestion to BS (21.9 +/- 2.0 min vs. 16.2 +/- 2.0 min). DAM calves slept longer bouts than TEAT calves (10.8 +/- 1.0 min vs. 8.3 +/- 1.0 min) and less often (78 +/- 4 vs. 92 +/- 4). Sucking colostrum from a teat bucket compared with drinking from an open"
Resumo:
The Asian elephant's foraging strategy in its natural habitat and in cultivation was studied in southern India during 1981-83. Though elephants consumed at least 112 plant species in the study area, about 85% of their diet consisted of only 25 species from the order Malvales and the families Leguminosae, Palmae, Cyperaceae and Gramineae. Alteration between a predominantly browse diet during the dry season with a grass diet during the early wet season was related to the seasonally changing protein content of grasses. Crop raiding, which was sporadic during the dry season, gradually increased with more area being cultivated with the onset of rains. Raiding frequency reached a peak during October-December, with some villages being raided almost every night, when finger millet (Eleusine coracana) was cultivated by most farmers. The monthly frequency of raiding was related to the seasonal movement of elephant herds and to the size of the enclave. Of their total annual food requirement, adult bull elephants derived an estimated 9.3% and family herds 1.7% in quantity from cultivated land. Cultivated cereal and millet crops provided significantly more protein, calcium and sodium than the wild grasses. Ultimately, crop raiding can be thought of as an extension of the elephant's optimal foraging strategy.
Resumo:
Transforming Growth Factors-beta (TGF-beta s) have been described in many vertebrate species of amphibians, aves and mammals. In this report we demonstrate the presence of TGF-beta 2 in pisces. TGF-beta 2 has been cloned from a fish, Cyrinus carpio, by RT-PCR using degenerate oligonucleotide primers. Sequence analysis of the amplified product and alignment of the deduced amino acid sequence with the human TGF-beta 2 amino acid sequence revealed 81% and 93% identity in the precursor and the mature regions, respectively. The northern blot analysis of fish heart RNA shows a major messenger RNA species of about 8.0 kb and two messages of very low abundance of about 5.0 kb and 4.0 kb. The identification of TGF-beta 2 isoform in Pisces and it's high degree of homology with the mammalian isoform suggests that among all TGF-beta isoforms, TGF-beta 2 is the most conserved during evolution. (C) 1997 Elsevier Science B.V.
Resumo:
Movement in animal groups is highly varied and ranges from seemingly disordered motion in swarms to coordinated aligned motion in flocks and schools. These social interactions are often thought to reduce risk from predators, despite a lack of direct evidence. We investigated risk-related selection for collective motion by allowing real predators ( bluegill sunfish) to hunt mobile virtual prey. By fusing simulated and real animal behavior, we isolated predator effects while controlling for confounding factors. Prey with a tendency to be attracted toward, and to align direction of travel with, near neighbors tended to form mobile coordinated groups and were rarely attacked. These results demonstrate that collective motion could evolve as a response to predation, without prey being able to detect and respond to predators.
Resumo:
Ionic polymer metal composites (IPMC) are a new class of smart materials that have attractive characteristics such as muscle like softness, low voltage and power consumption, and good performance in aqueous environments. Thus, IPMC’s provide promising application for biomimetic fish like propulsion systems. In this paper, we design and analyze IPMC underwater propulsor inspired from swimming of Labriform fishes. Different fish species in nature are source of inspiration for different biomimetic flapping IPMC fin design. Here, three fish species with high performance flapping pectoral fin locomotion is chosen and performance analysis of each fin design is done to discover the better configurations for engineering applications. In order to describe the behavior of an active IPMC fin actuator in water, a complex hydrodynamic function is used and structural model of the IPMC fin is obtained by modifying the classical dynamic equation for a slender beam. A quasi-steady blade element model that accounts for unsteady phenomena such as added mass effects, dynamic stall, and the cumulative Wagner effect is used to estimate the hydrodynamic performance of the flapping rectangular shape fin. Dynamic characteristics of IPMC actuated flapping fins having the same size as the actual fins of three different fish species, Gomphosus varius, Scarus frenatus and Sthethojulis trilineata, are analyzed with numerical simulations. Finally, a comparative study is performed to analyze the performance of three different biomimetic IPMC flapping pectoral fins.
Resumo:
Responses of redox regulatory system to long-term survival (> 18 h) of the catfish Heteropneustes fossilis in air are not yet understood. Lipid and protein oxidation level, oxidant (H2O2) generation, antioxidative status (levels of superoxide dismutase, catalase, glutathione peroxidase and reductase, ascorbic acid and non-protein sulfhydryl) and activities of respiratory complexes (I, II, III and IV) in mitochondria were investigated in muscle of H. fossilis under air exposure condition (0, 3, 6, 12 and 18 h at 25 A degrees C). The increased levels of both H2O2 and tissue oxidation were observed due to the decreased activities of antioxidant enzymes in muscle under water deprivation condition. However, ascorbic acid and non-protein thiol groups were the highest at 18 h air exposure time. A linear increase in complex II activity with air exposure time and an increase up to 12 h followed by a decrease in activity of complex I at 18 h were observed. Negative correlation was observed for complex III and V activity with exposure time. Critical time to modulate the above parameters was found to be 3 h air exposure. Dehydration induced oxidative stress due to modulation of electron transport chain and redox metabolizing enzymes in muscle of H. fossilis was clearly observed. Possible contribution of redox regulatory system in muscle tissue of the fish for long-term survival in air is elucidated. Results of the present study may be useful to understand the redox metabolism in muscle of fishes those are exposed to air in general and air breathing fishes in particular.
Resumo:
Fish diversity (77 species) in the Aghanashini River estuary of the Indian west coast is linked to variable salinity conditions and zones I, II and III for high, medium and low salinity respectively. Zone I, the junction between Arabian Sea and the estuary, had all species in yearly succession due to freshwater conditions in monsoon to high salinity in pre-monsoon. The medium (zone II) and low (zone III) salinity mid and upstream portions had maximum of 67 and 39 fish species respectively. Maintenance of natural salinity regimes in estuary, among other ecological factors, is critical for its fish diversity.
Resumo:
Present study had documented total mercury levels in six commonly consumed fish species, and performed across-sectional study on local residents to gauge their intake of fish (via dietary survey) and mercury exposure (via hair biomarker analyses). Mean total mercury content in edible composites of locally-caught fishes (topse, hilsa, mackerel, topse, sardinella, khoira) was low and ranged from 0.01 to 0.11 mu g g(-1) mercury, dry weight. In a cross-sectional study of 58 area residents, the mercury content in hair ranged from 0.25 to 1.23 mu g g(-1), with a mean of 0.65 +/- 0.23 mu g g(-1), Flair mercury level was not influenced by gender, age, or occupation. Mean number of meals consumed per week was 3.1 +/- 1.1, and all participants consumed at least one fish meal per week. When related to fish consumption, a significant positive association was found between number of fish meals consumed per week and hair mercury levels.
Resumo:
In this article, we analyze and design ionic polymer metal composite (IPMC) underwater propulsors inspired from swimming of labriform fishes. The structural model of the IPMC fin accounts for the electromechanical dynamics of the bean in water. A quasi steady blade element model that accounts for unsteady phenomena, such as added mass effects, dynamic stall, and cumulativeWagner effect is used to estimate the hydrodynamic performance. Dynamic characteristics of IPMC actuated flapping fins having the same size as the actual fins of three different fish species, Gomphosus varius, Scarus frenatus, and Sthethojulis trilineata, are analyzed using numerical simulations.
Resumo:
Mangrove forests in meso-tidal areas are completely drained during low tides, forming only temporary habitats for fish. We hypothesised that in such temporary habitats, where stranding risks are high, distance from tidal creeks that provided access to inundated areas during receding tides would be the primary determinant of fish distribution. Factors such as depth, root density and shade were hypothesised to have secondary effects. We tested these hypotheses in a tidally drained mangrove patch in the Andaman Islands, India. Using stake nets, we measured fish abundance and species richness relative to distance from creeks, root density/m(2), shade, water depth and size (total length) of fish. We also predicted that larger fish (including potential predators) would be closer to creeks, as they faced a greater chance of mortality if stranded. Thus we conducted tethering trials to examine if predation would be greater close to the creeks. Generalised linear mixed effects models showed that fish abundance was negatively influenced by increasing creek distance interacting with fish size and positively influenced by depth. Quantile regression analysis showed that species richness was limited by increasing creek distance. Proportion of predation was greatest close to the creeks (0-25 m) and declined with increasing distance. Abundance was also low very close to the creeks, suggesting that close to the creeks predation pressure may be an important determinant of fish abundance. The overall pattern however indicates that access to permanently inundated areas, may be an important determinant of fish distribution in tidally drained mangrove forests.
Resumo:
A depth-integrated two-dimensional numerical model of current, salinity and sediment transport was proposed and calibrated by the observation data in the Yangtze River Estuary. It was then applied to investigate the flow and sediment ratio of the navigati
Resumo:
1. INTRODUCTION 1.1 Working Group History 2. SPECIES COMPOSITION AND DISTRIBUTION PATTERNS RELATED TO WATER MASSES 2.1 Mesopelagic Fishes 2.1.1 Dominant families 2.1.2 Large-scale feeding and/or spawning migration or expatriation? 2.1.3 Definition of water masses 2.1.4 Species composition 2.2 Crustacean Micronekton 2.2.1 Euphausiids 2.2.2 Mysids and decapods 2.3 Cephalopod Micronekton 2.3.1 Family Enoploteuthidae 2.3.2 Family Gonatidae 2.3.3 Family Onychoteuthidae 2.3.4 Family Pyroteuthidae 2.3.5 Other cephalopods 3. VERTICAL DISTRIBUTION PATTERNS 3.1 Mesopelagic Fishes 3.1.1 Significance of diel vertical migration 3.1.2 DVM patterns 3.1.3 Ontogenetic change in DVM patterns 3.2 Crustacean Micronekton 3.3 Cephalopod Micronekton 4. BIOMASS PATTERNS 4.1 Micronektonic Fish 5. LIFE HISTORY 5.1 Fish Micronekton 5.1.1 Age and growth 5.1.2 Production 5.1.3 Reproduction 5.1.4 Mortality 5.2 Crustacean Micronekton 5.2.1 Age and growth 5.2.2 Production 5.2.3 Reproduction and early life history 5.2.4 Mortality 5.3 Cephalopod Micronekton 5.3.1 Age and growth 5.3.2 Production 5.3.3 Reproduction and early life history 5.3.4 Mortality 6. ECOLOGICAL RELATIONS 6.1 Feeding Habits 6.1.1 Fish micronekton 6.1.2 Crustacean micronekton 6.1.3 Cephalopod micronekton 6.2 Estimating the Impact of Micronekton Predation on Zooplankton 6.2.1 Predation by micronektonic fish 6.3 Predators 6.3.1 Cephalopods 6.3.2 Elasmobranchs 6.3.3 Osteichthyes 6.3.4 Seabirds 6.3.5 Pinnipeds 6.3.6 Cetaceans 6.3.7 Human consumption 6.4 Predation Rate 6.5 Ecosystem Perspectives 6.6 Interactions between Micronekton and Shallow Topographies 7. SAMPLING CONSIDERATIONS 7.1 Net Trawling 7.1.1 Sampling gears 7.1.2 Sampling of surface migratory myctophids 7.1.3 Commercial-sized trawl sampling 7.1.4 Sampling of euphausiids and pelagic decapods 7.2 Acoustic Sampling 7.2.1 Acoustic theory and usage 7.3 Video Observations (Submersible and ROV) 8. SUMMARY OF PRESENT STATE OF KNOWLEDGE 8.1 Fish Micronekton 8.2 Crustacean Micronekton 8.3 Cephalopod Micronekton 9. RECOMMENDATIONS 10. REFERENCES 11. APPENDICES (122 page document)