994 resultados para fiducial diffraction plane


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fabrication of flexible multilayer graphene oxide (GO) membrane and carbon nanotubes (CNTs) using a rare form of high-purity natural graphite, vein graphite, is reported for the first time. Graphite oxide is synthesized using vein graphite following Hummer's method. By facilitating functionalized graphene sheets in graphite oxide to self-assemble, a multilayer GO membrane is fabricated. Electric arc discharge is used to synthesis CNTs from vein graphite. Both multilayer GO membrane and CNTs are investigated using microscopy and spectroscopy experiments, i.e., scanning electron microscopy (SEM), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), core level photoelectron spectroscopy, and C K-edge X-ray absorption spectroscopy (NEXAFS), to characterize their structural and topographical properties. Characterization of vein graphite using different techniques reveals that it has a large number of crystallites, hence the large number of graphene sheets per crystallite, preferentially oriented along the (002) plane. NEXAFS and core level spectra confirm that vein graphite is highly crystalline and pure. Fourier transform infrared (FT-IR) and C 1s core level spectra show that oxygen functionalities (-C-OH, -CO,-C-O-C-) are introduced into the basal plane of graphite following chemical oxidation. Carbon nanotubes are produced from vein graphite through arc discharge without the use of any catalyst. HRTEM confirm that multiwalled carbon nanotube (MWNTs) are produced with the presence of some structure in the central pipe. A small percentage of single-walled nanotubes (SWNTs) are also produced simultaneously with MWNTs. Spectroscopic and microscopic data are further discussed here with a view to using vein graphite as the source material for the synthesis of carbon nanomaterials. © 2013 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper overviews recent and ongoing efforts by the authors to develop a design methodology to stabilize isolated relative equilibria in a kinematic model of identical particles moving in the plane at unit speed. Isolated relative equilibria correspond to either parallel motion of all particles with fixed relative spacing or to circular motion of all particles about the same center with fixed relative headings. © Springer-Verlag Berlin Heidelberg 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A small-strain two-dimensional discrete dislocation plasticity (DDP) framework is developed wherein dislocation motion is caused by climb-assisted glide. The climb motion of the dislocations is assumed to be governed by a drag-type relation similar to the glide-only motion of dislocations: such a relation is valid when vacancy kinetics is either diffusion limited or sink limited. The DDP framework is employed to predict the effect of dislocation climb on the uniaxial tensile and pure bending response of single crystals. Under uniaxial tensile loading conditions, the ability of dislocations to bypass obstacles by climb results in a reduced dislocation density over a wide range of specimen sizes in the climb-assisted glide case compared to when dislocation motion is only by glide. A consequence is that, at least in a single slip situation, size effects due to dislocation starvation are reduced. By contrast, under pure bending loading conditions, the dislocation density is unaffected by dislocation climb as geometrically necessary dislocations (GNDs) dominate. However, climb enables the dislocations to arrange themselves into lower energy configurations which significantly reduces the predicted bending size effect as well as the amount of reverse plasticity observed during unloading. The results indicate that the intrinsic plasticity material length scale associated with GNDs is strongly affected by thermally activated processes and will be a function of temperature. © 2013 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Depending on the temperature and the magnitude and orientation of an external magnetic field, the critical current density, J c , of a coated conductor can be limited either by the properties of the grain boundaries or by those of the grains. In order to ascertain what governs J c under different conditions, we have measured straight and curved tracks, patterned into RABiTS-MOD samples, while a magnetic field was swept in the plane of the films. Significantly different results were obtained at different field and temperature ranges, which we were able to attribute to J c being limited by either grain boundaries or grains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fundamental study of visible diffraction effects from patterned graphene layers is presented. By patterning graphene into optical gratings, visible diffraction from graphene is experimentally measured as a function of the number of layers and visible wavelengths. A practical application of these effects is also presented, by demonstrating an optical hologram based on graphene. A high resolution (pixel size 400 nm) intensity hologram is fabricated which, in response to incident laser light, generates a visible image. These findings suggest that visible diffraction in graphene can find practical application in holograms and should also be considered during the design and characterisation of graphene-based optical applications. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The residual stresses in Pb(Zr0.3Ti0.7)O3 thin films were measured by the sin2 Ψ method using the normal X-ray incidence. The spacing of different planes (hkl) parallel to the film surface were converted to the spacing of a set of inclined planes (100). The angles between (100) and (hkl) were equivalent to the tilting angles of (100) from the normal of film surface. The residual stresses were extracted from the linear slope of the strain difference between the equivalent inclined direction and normal direction with respect to the sin2 Ψ. The results were in consistency with that derived from the conventional sin2 Ψ method. © 2013 The Japan Society of Applied Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A twin-plane based nanowire growth mechanism is established using Au catalyzed Ge nanowire growth as a model system. Video-rate lattice-resolved environmental transmission electron microscopy shows a convex, V-shaped liquid catalyst-nanowire growth interface for a ⟨112⟩ growth direction that is composed of two Ge {111} planes that meet at a twin boundary. Unlike bulk crystals, the nanowire geometry allows steady-state growth with a single twin boundary at the nanowire center. We suggest that the nucleation barrier at the twin-plane re-entrant groove is effectively reduced by the line energy, and hence the twin acts as a preferential nucleation site that dictates the lateral step flow cycle which constitutes nanowire growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, highly porous fibre networks made of 316L fibres, with different fibre volume fractions, are characterized in terms of network architecture, elastic constants and fracture energies. Elastic constants are measured using quasi-static mechanical and modal vibration testing, yielding local and globally averaged properties, respectively. Differences between quasi-static and dynamic elastic constants are attributed to through-thickness shear effects. Regardless of the method employed, networks show signs of material inhomogeneity at high fibre densities, in agreement with X-ray nanotomography results. Strong auxetic (or negative Poisson's ratio) behaviour is observed in the through-thickness direction, which is attributed to fibre kinking induced during processing. Measured fracture energies are compared with model predictions incorporating information about in-plane fibre orientation distribution, fibre volume fraction and single fibre work of fracture. Experimental values are broadly consistent with model predictions, based on the assumption that this energy is primarily associated with plastic deformation of individual fibres within a process zone of the same order as the inter-joint spacing. © 2013 Published by Elsevier Ltd. on behalf of Acta Materialia Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mobile video and gaming are now widely used, and delivery of a glass-free 3D experience is of both research and development interest. The key drawbacks of a conventional 3D display based on a static lenticular lenslet array and parallax barriers are low resolution, limited viewing angle and reduced brightness, mainly because of the need of multiple-pixels for each object point. This study describes the concept and performance of pixel-level cylindrical liquid crystal (LC) lenses, which are designed to steer light to the left and right eye sequentially to form stereo parallax. The width of the LC lenses can be as small as 20-30 μm, so that the associated auto-stereoscopic display will have the same resolution as the 2D display panel in use. Such a thin sheet of tunable LC lens array can be applied directly on existing mobile displays, and can deliver 3D viewing experience while maintaining 2D viewing capability. Transparent electrodes were laser patterned to achieve the single pixel lens resolution, and a high birefringent LC material was used to realise a large diffraction angle for a wide field of view. Simulation was carried out to model the intensity profile at the viewing plane and optimise the lens array based on the measured LC phase profile. The measured viewing angle and intensity profile were compared with the simulation results. © 2014 SPIE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A computer program, QtUCP, has been developed based on several well-established algorithms using GCC 4.0 and Qt (R) 4.0 (Open Source Edition) under Debian GNU/Linux 4.0r0. it can determine the unit-cell parameters from an electron diffraction tilt series obtained from both double-tilt and rotation-tilt holders. In this approach, two or more primitive cells of the reciprocal lattice are determined from experimental data, in the meantime, the measurement errors of the tilt angles are checked and minimized. Subsequently, the derived primitive cells are converted into the reduced form and then transformed into the reduced direct primitive cell. Finally all the patterns are indexed and the least-squares refinement is employed to obtain the optimized results of the lattice parameters. Finally, two examples are given to show the application of the program, one is based on the experiment, the other is from the simulation. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hexagonal GaN is grown on a Si(111) substrate with AlN as a buffer layer by gas source molecular beam epitaxy (GSMBE) with ammonia. The thickness of AlN buffer is changed from 9 to 72 nm. When the thickness of AlN buffer is 36 nm, the surface morphology and crystal quality of GaN is optimal. The in-situ reflection high energy electron diffraction (RHEED) reveals that the transition to a two-dimensional growth mode of AlN is the key to the quality of GaN. However, the thickness of AlN buffer is not so critical to the residual in-plane tensile stress in GaN grown on Si(111) by GSMBE for AlN thickness between 9 to 72 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the uniaxial strain effect in the c-plane on optical properties of wurtzite GaN based on k center dot p theory, the spin-orbit interactions are also taken into account. The energy dispersions show that the uniaxial strain in the c-plane gives an anisotropic energy splitting in the k(x) - k(y) plane, which can reduce the density of states. The uniaxial strain also results in giant in-plane optical polarization anisotropy, hence causes the threshold carrier density reduced. We clarify the relations between the uniaxial strain and the optical polarization properties. As a result, it is suggested that the compressive uniaxial strain perpendicular to the laser cavity direction in the c-plane is one of the preferable approaches for the effcient improvement of GaN-based laser performance.