927 resultados para feature inspection method


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper formulates a node-based smoothed conforming point interpolation method (NS-CPIM) for solid mechanics. In the proposed NS-CPIM, the higher order conforming PIM shape functions (CPIM) have been constructed to produce a continuous and piecewise quadratic displacement field over the whole problem domain, whereby the smoothed strain field was obtained through smoothing operation over each smoothing domain associated with domain nodes. The smoothed Galerkin weak form was then developed to create the discretized system equations. Numerical studies have demonstrated the following good properties: NS-CPIM (1) can pass both standard and quadratic patch test; (2) provides an upper bound of strain energy; (3) avoid the volumetric locking; (4) provides the higher accuracy than those in the node-based smoothed schemes of the original PIMs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin solid films were extensively used in the making of solar cells, cutting tools, magnetic recording devices, etc. As a result, the accurate measurement of mechanical properties of the thin films, such as hardness and elastic modulus, was required. The thickness of thin films normally varies from tens of nanometers to several micrometers. It is thus challenging to measure their mechanical properties. In this study, a nanoscratch method was proposed for hardness measurement. A three-dimensional finite element method (3-D FEM) model was developed to validate the nanoscratch method and to understand the substrate effect during nanoscratch. Nanoindentation was also used for comparison. The nanoscratch method was demonstrated to be valuable for measuring hardness of thin solid films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, an enriched radial point interpolation method (e-RPIM) is developed for computational mechanics. The conventional radial basis function (RBF) interpolation is novelly augmented by the suitable basis functions to reflect the natural properties of deformation. The performance of the enriched meshless RBF shape functions is first investigated using the surface fitting. The surface fitting results have proven that, compared with the conventional RBF, the enriched RBF interpolation has a much better accuracy to fit a complex surface than the conventional RBF interpolation. It has proven that the enriched RBF shape function will not only possess all advantages of the conventional RBF interpolation, but also can accurately reflect the deformation properties of problems. The system of equations for two-dimensional solids is then derived based on the enriched RBF shape function and both of the meshless strong-form and weak-form. A numerical example of a bar is presented to study the effectiveness and efficiency of e-RPIM. As an important application, the newly developed e-RPIM, which is augmented by selected trigonometric basis functions, is applied to crack problems. It has been demonstrated that the present e-RPIM is very accurate and stable for fracture mechanics problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new relationship type of social networks - online dating - are gaining popularity. With a large member base, users of a dating network are overloaded with choices about their ideal partners. Recommendation methods can be utilized to overcome this problem. However, traditional recommendation methods do not work effectively for online dating networks where the dataset is sparse and large, and a two-way matching is required. This paper applies social networking concepts to solve the problem of developing a recommendation method for online dating networks. We propose a method by using clustering, SimRank and adapted SimRank algorithms to recommend matching candidates. Empirical results show that the proposed method can achieve nearly double the performance of the traditional collaborative filtering and common neighbor methods of recommendation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent surveys of information technology management professionals show that understanding business domains in terms of business productivity and cost reduction potential, knowledge of different vertical industry segments and their information requirements, understanding of business processes and client-facing skills are more critical for Information Systems personnel than ever before. In an attempt to restrucuture the information systems curriculum accordingly, our view it that information systems students need to develop an appreciation for organizational work systems in order to understand the operation and significance of information systems within such work systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a novel algorithm for localization during navigation that performs matching over local image sequences. Instead of calculating the single location most likely to correspond to a current visual scene, the approach finds candidate matching locations within every section (subroute) of all learned routes. Through this approach, we reduce the demands upon the image processing front-end, requiring it to only be able to correctly pick the best matching image from within a short local image sequence, rather than globally. We applied this algorithm to a challenging downhill mountain biking visual dataset where there was significant perceptual or environment change between repeated traverses of the environment, and compared performance to applying the feature-based algorithm FAB-MAP. The results demonstrate the potential for localization using visual sequences, even when there are no visual features that can be reliably detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the analysis of material nonlinearity, an effective shear modulus approach based on the strain control method is proposed in this paper by using point collocation method. Hencky’s total deformation theory is used to evaluate the effective shear modulus, Young’s modulus and Poisson’s ratio, which are treated as spatial field variables. These effective properties are obtained by the strain controlled projection method in an iterative manner. To evaluate the second order derivatives of shape function at the field point, the radial basis function (RBF) in the local support domain is used. Several numerical examples are presented to demonstrate the efficiency and accuracy of the proposed method and comparisons have been made with analytical solutions and the finite element method (ABAQUS).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pedestrians’ use of mp3 players or mobile phones can pose the risk of being hit by motor vehicles. We present an approach for detecting a crash risk level using the computing power and the microphone of mobile devices that can be used to alert the user in advance of an approaching vehicle so as to avoid a crash. A single feature extractor classifier is not usually able to deal with the diversity of risky acoustic scenarios. In this paper, we address the problem of detection of vehicles approaching a pedestrian by a novel, simple, non resource intensive acoustic method. The method uses a set of existing statistical tools to mine signal features. Audio features are adaptively thresholded for relevance and classified with a three component heuristic. The resulting Acoustic Hazard Detection (AHD) system has a very low false positive detection rate. The results of this study could help mobile device manufacturers to embed the presented features into future potable devices and contribute to road safety.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteases regulate a spectrum of diverse physiological processes, and dysregulation of proteolytic activity drives a plethora of pathological conditions. Understanding protease function is essential to appreciating many aspects of normal physiology and progression of disease. Consequently, development of potent and specific inhibitors of proteolytic enzymes is vital to provide tools for the dissection of protease function in biological systems and for the treatment of diseases linked to aberrant proteolytic activity. The studies in this thesis describe the rational design of potent inhibitors of three proteases that are implicated in disease development. Additionally, key features of the interaction of proteases and their cognate inhibitors or substrates are analysed and a series of rational inhibitor design principles are expounded and tested. Rational design of protease inhibitors relies on a comprehensive understanding of protease structure and biochemistry. Analysis of known protease cleavage sites in proteins and peptides is a commonly used source of such information. However, model peptide substrate and protein sequences have widely differing levels of backbone constraint and hence can adopt highly divergent structures when binding to a protease’s active site. This may result in identical sequences in peptides and proteins having different conformations and diverse spatial distribution of amino acid functionalities. Regardless of this, protein and peptide cleavage sites are often regarded as being equivalent. One of the key findings in the following studies is a definitive demonstration of the lack of equivalence between these two classes of substrate and invalidation of the common practice of using the sequences of model peptide substrates to predict cleavage of proteins in vivo. Another important feature for protease substrate recognition is subsite cooperativity. This type of cooperativity is commonly referred to as protease or substrate binding subsite cooperativity and is distinct from allosteric cooperativity, where binding of a molecule distant from the protease active site affects the binding affinity of a substrate. Subsite cooperativity may be intramolecular where neighbouring residues in substrates are interacting, affecting the scissile bond’s susceptibility to protease cleavage. Subsite cooperativity can also be intermolecular where a particular residue’s contribution to binding affinity changes depending on the identity of neighbouring amino acids. Although numerous studies have identified subsite cooperativity effects, these findings are frequently ignored in investigations probing subsite selectivity by screening against diverse combinatorial libraries of peptides (positional scanning synthetic combinatorial library; PS-SCL). This strategy for determining cleavage specificity relies on the averaged rates of hydrolysis for an uncharacterised ensemble of peptide sequences, as opposed to the defined rate of hydrolysis of a known specific substrate. Further, since PS-SCL screens probe the preference of the various protease subsites independently, this method is inherently unable to detect subsite cooperativity. However, mean hydrolysis rates from PS-SCL screens are often interpreted as being comparable to those produced by single peptide cleavages. Before this study no large systematic evaluation had been made to determine the level of correlation between protease selectivity as predicted by screening against a library of combinatorial peptides and cleavage of individual peptides. This subject is specifically explored in the studies described here. In order to establish whether PS-SCL screens could accurately determine the substrate preferences of proteases, a systematic comparison of data from PS-SCLs with libraries containing individually synthesised peptides (sparse matrix library; SML) was carried out. These SML libraries were designed to include all possible sequence combinations of the residues that were suggested to be preferred by a protease using the PS-SCL method. SML screening against the three serine proteases kallikrein 4 (KLK4), kallikrein 14 (KLK14) and plasmin revealed highly preferred peptide substrates that could not have been deduced by PS-SCL screening alone. Comparing protease subsite preference profiles from screens of the two types of peptide libraries showed that the most preferred substrates were not detected by PS SCL screening as a consequence of intermolecular cooperativity being negated by the very nature of PS SCL screening. Sequences that are highly favoured as result of intermolecular cooperativity achieve optimal protease subsite occupancy, and thereby interact with very specific determinants of the protease. Identifying these substrate sequences is important since they may be used to produce potent and selective inhibitors of protolytic enzymes. This study found that highly favoured substrate sequences that relied on intermolecular cooperativity allowed for the production of potent inhibitors of KLK4, KLK14 and plasmin. Peptide aldehydes based on preferred plasmin sequences produced high affinity transition state analogue inhibitors for this protease. The most potent of these maintained specificity over plasma kallikrein (known to have a very similar substrate preference to plasmin). Furthermore, the efficiency of this inhibitor in blocking fibrinolysis in vitro was comparable to aprotinin, which previously saw clinical use to reduce perioperative bleeding. One substrate sequence particularly favoured by KLK4 was substituted into the 14 amino acid, circular sunflower trypsin inhibitor (SFTI). This resulted in a highly potent and selective inhibitor (SFTI-FCQR) which attenuated protease activated receptor signalling by KLK4 in vitro. Moreover, SFTI-FCQR and paclitaxel synergistically reduced growth of ovarian cancer cells in vitro, making this inhibitor a lead compound for further therapeutic development. Similar incorporation of a preferred KLK14 amino acid sequence into the SFTI scaffold produced a potent inhibitor for this protease. However, the conformationally constrained SFTI backbone enforced a different intramolecular cooperativity, which masked a KLK14 specific determinant. As a consequence, the level of selectivity achievable was lower than that found for the KLK4 inhibitor. Standard mechanism inhibitors such as SFTI rely on a stable acyl-enzyme intermediate for high affinity binding. This is achieved by a conformationally constrained canonical binding loop that allows for reformation of the scissile peptide bond after cleavage. Amino acid substitutions within the inhibitor to target a particular protease may compromise structural determinants that support the rigidity of the binding loop and thereby prevent the engineered inhibitor reaching its full potential. An in silico analysis was carried out to examine the potential for further improvements to the potency and selectivity of the SFTI-based KLK4 and KLK14 inhibitors. Molecular dynamics simulations suggested that the substitutions within SFTI required to target KLK4 and KLK14 had compromised the intramolecular hydrogen bond network of the inhibitor and caused a concomitant loss of binding loop stability. Furthermore in silico amino acid substitution revealed a consistent correlation between a higher frequency of formation and the number of internal hydrogen bonds of SFTI-variants and lower inhibition constants. These predictions allowed for the production of second generation inhibitors with enhanced binding affinity toward both targets and highlight the importance of considering intramolecular cooperativity effects when engineering proteins or circular peptides to target proteases. The findings from this study show that although PS-SCLs are a useful tool for high throughput screening of approximate protease preference, later refinement by SML screening is needed to reveal optimal subsite occupancy due to cooperativity in substrate recognition. This investigation has also demonstrated the importance of maintaining structural determinants of backbone constraint and conformation when engineering standard mechanism inhibitors for new targets. Combined these results show that backbone conformation and amino acid cooperativity have more prominent roles than previously appreciated in determining substrate/inhibitor specificity and binding affinity. The three key inhibitors designed during this investigation are now being developed as lead compounds for cancer chemotherapy, control of fibrinolysis and cosmeceutical applications. These compounds form the basis of a portfolio of intellectual property which will be further developed in the coming years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal-infrared images have superior statistical properties compared with visible-spectrum images in many low-light or no-light scenarios. However, a detailed understanding of feature detector performance in the thermal modality lags behind that of the visible modality. To address this, the first comprehensive study on feature detector performance on thermal-infrared images is conducted. A dataset is presented which explores a total of ten different environments with a range of statistical properties. An investigation is conducted into the effects of several digital and physical image transformations on detector repeatability in these environments. The effect of non-uniformity noise, unique to the thermal modality, is analyzed. The accumulation of sensor non-uniformities beyond the minimum possible level was found to have only a small negative effect. A limiting of feature counts was found to improve the repeatability performance of several detectors. Most other image transformations had predictable effects on feature stability. The best-performing detector varied considerably depending on the nature of the scene and the test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complex networks have been studied extensively due to their relevance to many real-world systems such as the world-wide web, the internet, biological and social systems. During the past two decades, studies of such networks in different fields have produced many significant results concerning their structures, topological properties, and dynamics. Three well-known properties of complex networks are scale-free degree distribution, small-world effect and self-similarity. The search for additional meaningful properties and the relationships among these properties is an active area of current research. This thesis investigates a newer aspect of complex networks, namely their multifractality, which is an extension of the concept of selfsimilarity. The first part of the thesis aims to confirm that the study of properties of complex networks can be expanded to a wider field including more complex weighted networks. Those real networks that have been shown to possess the self-similarity property in the existing literature are all unweighted networks. We use the proteinprotein interaction (PPI) networks as a key example to show that their weighted networks inherit the self-similarity from the original unweighted networks. Firstly, we confirm that the random sequential box-covering algorithm is an effective tool to compute the fractal dimension of complex networks. This is demonstrated on the Homo sapiens and E. coli PPI networks as well as their skeletons. Our results verify that the fractal dimension of the skeleton is smaller than that of the original network due to the shortest distance between nodes is larger in the skeleton, hence for a fixed box-size more boxes will be needed to cover the skeleton. Then we adopt the iterative scoring method to generate weighted PPI networks of five species, namely Homo sapiens, E. coli, yeast, C. elegans and Arabidopsis Thaliana. By using the random sequential box-covering algorithm, we calculate the fractal dimensions for both the original unweighted PPI networks and the generated weighted networks. The results show that self-similarity is still present in generated weighted PPI networks. This implication will be useful for our treatment of the networks in the third part of the thesis. The second part of the thesis aims to explore the multifractal behavior of different complex networks. Fractals such as the Cantor set, the Koch curve and the Sierspinski gasket are homogeneous since these fractals consist of a geometrical figure which repeats on an ever-reduced scale. Fractal analysis is a useful method for their study. However, real-world fractals are not homogeneous; there is rarely an identical motif repeated on all scales. Their singularity may vary on different subsets; implying that these objects are multifractal. Multifractal analysis is a useful way to systematically characterize the spatial heterogeneity of both theoretical and experimental fractal patterns. However, the tools for multifractal analysis of objects in Euclidean space are not suitable for complex networks. In this thesis, we propose a new box covering algorithm for multifractal analysis of complex networks. This algorithm is demonstrated in the computation of the generalized fractal dimensions of some theoretical networks, namely scale-free networks, small-world networks, random networks, and a kind of real networks, namely PPI networks of different species. Our main finding is the existence of multifractality in scale-free networks and PPI networks, while the multifractal behaviour is not confirmed for small-world networks and random networks. As another application, we generate gene interactions networks for patients and healthy people using the correlation coefficients between microarrays of different genes. Our results confirm the existence of multifractality in gene interactions networks. This multifractal analysis then provides a potentially useful tool for gene clustering and identification. The third part of the thesis aims to investigate the topological properties of networks constructed from time series. Characterizing complicated dynamics from time series is a fundamental problem of continuing interest in a wide variety of fields. Recent works indicate that complex network theory can be a powerful tool to analyse time series. Many existing methods for transforming time series into complex networks share a common feature: they define the connectivity of a complex network by the mutual proximity of different parts (e.g., individual states, state vectors, or cycles) of a single trajectory. In this thesis, we propose a new method to construct networks of time series: we define nodes by vectors of a certain length in the time series, and weight of edges between any two nodes by the Euclidean distance between the corresponding two vectors. We apply this method to build networks for fractional Brownian motions, whose long-range dependence is characterised by their Hurst exponent. We verify the validity of this method by showing that time series with stronger correlation, hence larger Hurst exponent, tend to have smaller fractal dimension, hence smoother sample paths. We then construct networks via the technique of horizontal visibility graph (HVG), which has been widely used recently. We confirm a known linear relationship between the Hurst exponent of fractional Brownian motion and the fractal dimension of the corresponding HVG network. In the first application, we apply our newly developed box-covering algorithm to calculate the generalized fractal dimensions of the HVG networks of fractional Brownian motions as well as those for binomial cascades and five bacterial genomes. The results confirm the monoscaling of fractional Brownian motion and the multifractality of the rest. As an additional application, we discuss the resilience of networks constructed from time series via two different approaches: visibility graph and horizontal visibility graph. Our finding is that the degree distribution of VG networks of fractional Brownian motions is scale-free (i.e., having a power law) meaning that one needs to destroy a large percentage of nodes before the network collapses into isolated parts; while for HVG networks of fractional Brownian motions, the degree distribution has exponential tails, implying that HVG networks would not survive the same kind of attack.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an iterative hierarchical algorithm for multi-view stereo. The algorithm attempts to utilise as much contextual information as is available to compute highly accurate and robust depth maps. There are three novel aspects to the approach: 1) firstly we incrementally improve the depth fidelity as the algorithm progresses through the image pyramid; 2) secondly we show how to incorporate visual hull information (when available) to constrain depth searches; and 3) we show how to simultaneously enforce the consistency of the depth-map by continual comparison with neighbouring depth-maps. We show that this approach produces highly accurate depth-maps and, since it is essentially a local method, is both extremely fast and simple to implement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a strategy for delayed research method selection in a qualitative interpretivist research. An exemplary case details how explorative interviews were designed and conducted in accordance with a paradigm prior to deciding whether to adopt grounded theory or phenomenology for data analysis. The focus here is to determine the most appropriate research strategy in this case the methodological framing to conduct research and represent findings, both of which are detailed. Research addressing current management issues requires both a flexible framework and the capability to consider the research problem from various angles, to derive tangible results for academia with immediate application to business demands. Researchers, and in particular novices, often struggle to decide on an appropriate research method suitable to address their research problem. This often applies to interpretative qualitative research where it is not always immediately clear which is the most appropriate method to use, as the research objectives shift and crystallize over time. This paper uses an exemplary case to reveal how the strategy for delayed research method selection contributes to deciding whether to adopt grounded theory or phenomenology in the initial phase of a PhD research project. In this case, semi-structured interviews were used for data generation framed in an interpretivist approach, situated in a business context. Research questions for this study were thoroughly defined and carefully framed in accordance with the research paradigm‟s principles, while at the same time ensuring that the requirements of both potential research methods were met. The grounded theory and phenomenology methods were compared and contrasted to determine their suitability and whether they meet the research objectives based on a pilot study. The strategy proposed in this paper is an alternative to the more „traditional‟ approach, which initially selects the methodological formulation, followed by data generation. In conclusion, the suggested strategy for delayed research method selection intends to help researchers identify and apply the most appropriate method to their research. This strategy is based on explorations of data generation and analysis in order to derive faithful results from the data generated.