987 resultados para explicit och implicit inl
Resumo:
Summary: Violent female offenders in Finland - personality and life situation
Resumo:
Life cycle analyses (LCA) approaches require adaptation to reflect the increasing delocalization of production to emerging countries. This work addresses this challenge by establishing a country-level, spatially explicit life cycle inventory (LCI). This study comprises three separate dimensions. The first dimension is spatial: processes and emissions are allocated to the country in which they take place and modeled to take into account local factors. Emerging economies China and India are the location of production, the consumption occurs in Germany, an Organisation for Economic Cooperation and Development country. The second dimension is the product level: we consider two distinct textile garments, a cotton T-shirt and a polyester jacket, in order to highlight potential differences in the production and use phases. The third dimension is the inventory composition: we track CO2, SO2, NO (x), and particulates, four major atmospheric pollutants, as well as energy use. This third dimension enriches the analysis of the spatial differentiation (first dimension) and distinct products (second dimension). We describe the textile production and use processes and define a functional unit for a garment. We then model important processes using a hierarchy of preferential data sources. We place special emphasis on the modeling of the principal local energy processes: electricity and transport in emerging countries. The spatially explicit inventory is disaggregated by country of location of the emissions and analyzed according to the dimensions of the study: location, product, and pollutant. The inventory shows striking differences between the two products considered as well as between the different pollutants considered. For the T-shirt, over 70% of the energy use and CO2 emissions occur in the consuming country, whereas for the jacket, more than 70% occur in the producing country. This reversal of proportions is due to differences in the use phase of the garments. For SO2, in contrast, over two thirds of the emissions occur in the country of production for both T-shirt and jacket. The difference in emission patterns between CO2 and SO2 is due to local electricity processes, justifying our emphasis on local energy infrastructure. The complexity of considering differences in location, product, and pollutant is rewarded by a much richer understanding of a global production-consumption chain. The inclusion of two different products in the LCI highlights the importance of the definition of a product's functional unit in the analysis and implications of results. Several use-phase scenarios demonstrate the importance of consumer behavior over equipment efficiency. The spatial emission patterns of the different pollutants allow us to understand the role of various energy infrastructure elements. The emission patterns furthermore inform the debate on the Environmental Kuznets Curve, which applies only to pollutants which can be easily filtered and does not take into account the effects of production displacement. We also discuss the appropriateness and limitations of applying the LCA methodology in a global context, especially in developing countries. Our spatial LCI method yields important insights in the quantity and pattern of emissions due to different product life cycle stages, dependent on the local technology, emphasizing the importance of consumer behavior. From a life cycle perspective, consumer education promoting air-drying and cool washing is more important than efficient appliances. Spatial LCI with country-specific data is a promising method, necessary for the challenges of globalized production-consumption chains. We recommend inventory reporting of final energy forms, such as electricity, and modular LCA databases, which would allow the easy modification of underlying energy infrastructure.
Resumo:
Advancements in high-throughput technologies to measure increasingly complex biological phenomena at the genomic level are rapidly changing the face of biological research from the single-gene single-protein experimental approach to studying the behavior of a gene in the context of the entire genome (and proteome). This shift in research methodologies has resulted in a new field of network biology that deals with modeling cellular behavior in terms of network structures such as signaling pathways and gene regulatory networks. In these networks, different biological entities such as genes, proteins, and metabolites interact with each other, giving rise to a dynamical system. Even though there exists a mature field of dynamical systems theory to model such network structures, some technical challenges are unique to biology such as the inability to measure precise kinetic information on gene-gene or gene-protein interactions and the need to model increasingly large networks comprising thousands of nodes. These challenges have renewed interest in developing new computational techniques for modeling complex biological systems. This chapter presents a modeling framework based on Boolean algebra and finite-state machines that are reminiscent of the approach used for digital circuit synthesis and simulation in the field of very-large-scale integration (VLSI). The proposed formalism enables a common mathematical framework to develop computational techniques for modeling different aspects of the regulatory networks such as steady-state behavior, stochasticity, and gene perturbation experiments.
Resumo:
This paper is a study of the concept of priority and its use together with the notion of hierarchy in academic writing and theoretical models of translation. Hierarchies and priorities can be implicit or explicit, prescribed, suggested or described. The paper starts, chronologically, wtih Nida and Levý’s hierarchical accounts of translation and follows their legacy in scholars as different as Newmark and Gutt. The concept of priorities is hinted at also in didactic models (Nord) as well as in norm-theoretical and accounts of translation (Toury and Chesterman) within Descriptive Translation Studies. All of these authors are analyzed and commented. The paper calls for a more systematic and straightforward account of translational priorities, and proposes a few conceptual tools that stem from this research model, including the concepts of ambition and richness of a translation. Finally, the paper concludes with an adaptation of Lakoff and Johnson’s view of prototypicality and its potential usefulness in research into and the understanding of translation.