976 resultados para experimental physical chemistry
Resumo:
The indolines and thionins are basic, amphiphilic and cysteine-rich proteins found in cereals; puroindoline-a (Pin-a) and β-purothionin (β-Pth) are members of these families in wheat (Triticum aestivum). Pin-a and β-Pth have been suggested to play a significant role in seed defence against microbial pathogens, making the interaction of these proteins with model bacterial membranes an area of potential interest. We have examined the binding of these proteins to lipid monolayers composed of 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG) using a combination of neutron reflectometry, Brewster angle microscopy, and infrared spectroscopy. Results showed that both Pin-a and β-Pth interact strongly with condensed phase DPPG monolayers, but the degree of penetration was different. β-Pth was shown to penetrate the lipid acyl chain region of the monolayer and remove lipids from the air/liquid interface during the adsorption process, suggesting this protein may be able to both form membrane spanning ion channels and remove membrane phospholipids in its lytic activity. Conversely, Pin-a was shown to interact mainly with the head-group region of the condensed phase DPPG monolayer and form a 33 Å thick layer below the lipid film. The differences between the interfacial structures formed by these two proteins may be related to the differing composition of the Pin-a and β-Pth hydrophobic regions.
Resumo:
We report the results of first systematic studies of organic adsorption from aqueous solutions onto relatively long single walled carbon nanotubes (four tubes, in initial and oxidised forms). Using molecular dynamics simulations (GROMACS package) we discuss the behaviour of tube-water as well as tube-adsorbate systems, for three different adsorbates (benzene, phenol and paracetamol).
Resumo:
Density Functional Theory (DFT) has been used with an empirically-derived correction for the wavenumbers of vibrational band positions to predict the infrared spectra of several fluorinated esters (FESs). Radiative efficiencies (REs) were then determined using the method of Pinnock et al. and these were used with atmospheric lifetimes from the literature to determine the direct global warming potentials of FESs. FESs, in particular fluoroalkylacetates, alkylfluoroacetates and fluoroalkylformates, are potential greenhouse gases and their likely long atmospheric lifetimes and relatively large REs, compared to their parent HFEs, make them active contributors to global warming. Here, we use the concept of indirect global warming potential (indirect GWP) to assess the contribution to the warming of several commonly used HFEs emitted from the Earth's surface, explicitly taking into account that these HFEs will be converted into the corresponding FESs in the troposphere. The indirect GWP can be calculated using the radiative efficiencies and lifetimes of the HFE and its degradation FES products. We found that the GWPs of those studied HFEs which have the smallest direct GWP can be increased by 100-1600% when taking account of the cumulative effect due to the secondary FESs formed during HFE atmospheric oxidation. This effect may be particularly important for non-segregated HFEs and some segregated HFEs, which may contribute significantly more to global warming than can be concluded from examination of their direct GWPs.
Resumo:
The plant defence proteins α1- and α2-purothionin (Pth) are type 1 thionins from common wheat (Triticum aestivum). These highly homologous proteins possess characteristics common amongst antimicrobial peptides and proteins, that is, cationic charge, amphiphilicity and hydrophobicity. Both α1- and α2-Pth possess the same net charge, but differ in relative hydrophobicity as determined by C18 reversed phase HPLC. Brewster angle microscopy, X-ray and neutron reflectometry, external reflection FTIR and associated surface pressure measurements demonstrated that α1 and α2-Pth interact strongly with condensed phase 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG) monolayers at the air/liquid interface. Both thionins disrupted the in-plane structure of the anionic phospholipid monolayer, removing lipid during this process and both penetrated the lipid monolayer in addition to adsorbing as a single protein layer to the lipid head-group. However, analysis of the interfacial structures revealed that the α2-Pth showed faster disruption of the lipid film and removed more phospholipid (12%) from the interface than α1-Pth. Correlating the protein properties and lipid binding activity suggests that hydrophobicity plays a key role in the membrane lipid removal activity of thionins.
Resumo:
The formation of complexes in solutions of oppositely charged polyions has been studied by Monte Carlo simulations. The amount as well as the length, and thus, the absolute charge of one of the polyions have been varied. There is an increasing tendency to form large clusters as the excess of one kind of polyion decreases. When all polyions have the same length, this tendency reaches a maximum near, but off, equivalent amounts of the two types of polyions. When one kind of polyion is made shorter, the propensity to form large clusters decreases and the fluctuations in cluster charge increases. Simple free-energy expressions have been formulated on the basis of a set of simple rules that help rationalize the observations. By calculating cluster distributions in both grand canonical and canonical ensembles, it has been possible to show the extent of finite-size effects in the simulations.
Resumo:
The formation of complexes in solutions containing positively charged polyions (polycations) and a variable amount of negatively charged polyions (polyanions) has been investigated by Monte Carlo simulations. The polyions were described as flexible chains of charged hard spheres interacting through a screened Coulomb potential. The systems were analyzed in terms of cluster compositions, structure factors, and radial distribution functions. At 50% charge equivalence or less, complexes involving two polycations and one polyanion were frequent, while closer to charge equivalence, larger clusters were formed. Small and neutral complexes dominated the solution at charge equivalence in a monodisperse system, while larger clusters again dominated the solution when the polyions were made polydisperse. The cluster composition and solution structure were also examined as functions of added salt by varying the electrostatic screening length. The observed formation of clusters could be rationalized by a few simple rules.
Resumo:
By using simulation methods, we studied the adsorption of binary CO2-CH4 mixtures on various CH4 preadsorbed carbonaceous materials (e.g., triply periodic carbon minimal surfaces, slit-shaped carbon micropores, and Harris's virtual porous carbons) at 293 K. Regardless of the different micropore geometry, two-stage mechanism of CH4 displacement from carbon nanospaces by coadsorbed CO2 has been proposed. In the first stage, the coadsorbed CO2 molecules induced the enhancement of CH4 adsorbed amount. In the second stage, the stronger affinity of CO2 to flat/curved graphitic surfaces as well as CO2-CO2 interactions cause the displacement of CH4 molecules from carbonaceous materials. The operating conditions of CO2-induced cleaning of the adsorbed phase from CH4 mixture component strongly depend on the size of the carbon micropores, but, in general, the enhanced adsorption field in narrow carbon ultramicropores facilitates the nonreactive displacement of CH4 by coadsorbed CO2. This is because in narrow carbon ultramicropores the equilibrium CO2/CH4 selectivity (i.e., preferential adsorption toward CO2) increased significantly. The adsorption field in wider micropores (i.e., the overall surface energy) for both CO2 and CH4 is very similar, which decreases the preferential CO2 adsorption. This suppresses the displacement of CH4 by coadsorbed CO2 and assists further adsorption of CH4 from the bulk mixture (i.e., CO2/CH4 mixing in adsorbed phase).
Resumo:
The structures of 2-hydroxybenzamide(C7H7NO2) and 2-methoxybenzamide (C8H9NO2) have been determined in the gas-phase by electron diffraction using results from quantum chemical calculations to inform restraints used on the structural parameters. Theoretical methods (HF and MP2/6-311+G(d,p)) predict four stable conformers for both 2-hydroxybenzamide and 2-methoxybenzamide. For both compounds, evidence for intramolecular hydrogen bonding is presented. In 2-hydroxybenzamide, the observed hydrogen bonded fragment is between the hydroxyl and carbonyl groups, while in 2-methoxybenzamide, the hydrogen bonded fragment is between one of the hydrogen atoms of the amide group and the methoxy oxygen atom.
Resumo:
In this paper we describe a novel combination of Raman spectroscopy, isotope editing and X-ray scattering as a powerful approach to give detailed structural information on aromatic side chains in peptide fibrils. The orientation of the tyrosine residues in fibrils of the peptide YTIAALLSPYS with respect to the fibril axis has been determined from a combination of polarised Raman spectroscopy and X-ray diffraction measurements. The Raman intensity of selected tyrosine bands collected at different polarisation geometries is related to the values and orientation of the Raman tensor for those specific vibrations. Using published Raman tensor values we solved the relevant expressions for both of the two tyrosine residues present in this peptide. Ring deuteration in one of the two tyrosine side chains allowed for the calculation to be performed individually for both, by virtue of the isotopic shift that eliminates band overlapping. Sample disorder was taken into account by obtaining the distribution of orientations of the samples from X-ray diffraction experiments. The results provide previously unavailable details about the molecular conformation of this peptide, and demonstrate the value of this approach for the study of amyloid fibrils.
Resumo:
Photoelectron spectroscopy and scanning tunneling microscopy have been used to investigate how the oxidation state of Ce in CeO2-x(111) ultrathin films is influenced by the presence of Pd nanoparticles. Pd induces an increase in the concentration of Ce3+ cations, which is interpreted as charge transfer from Pd to CeO2-x(111) on the basis of DFT+U calculations. Charge transfer from Pd to Ce4+ is found to be energetically favorable even for individual Pd adatoms. These results have implications for our understanding of the redox behavior of ceria-based model catalyst systems.
Resumo:
We have investigated the (001) surface structure of lithium titanate (Li2TiO3) using auger electron spectroscopy (AES), low-energy electron diffraction (LEED), and scanning tunneling microscopy (STM). Li2TiO3 is a potential fusion reactor blanket material. After annealing at 1200 K, LEED demonstrated that the Li2TiO3(001) surface was well ordered and not reconstructed. STM imaging showed that terraces are separated in height by about 0.3 nm suggesting a single termination layer. Moreover, hexagonal patterns with a periodicity of ∼0.4 nm are observed. On the basis of molecular dynamics (MD) simulations, these are interpreted as a dynamic arrangement of Li atoms.
Resumo:
We have examined the thermodynamic stability of a-Fe2O3–Cr2O3 solid solutions as a function of temperature and composition, using a combination of statistical mechanics with atomistic simulation techniques based on classical interatomic potentials, and the addition of a model magnetic interaction Hamiltonian. Our calculations show that the segregation of the Fe and Cr cations is marginally favourable in energy compared to any other cation distribution, and in fact the energy of any cation configuration of the mixed system is always slightly higher than the combined energies of equivalent amounts of the pure oxides separately. However, the positive enthalpy of mixing is small enough to allow the stabilisation of highly disordered solid solutions at temperatures of B400 K or higher. We have investigated the degree of cation disorder and the effective cell parameters of the mixed oxide as functions of temperature and composition, and we discuss the effect of magnetic interactions and lattice vibrations on the stability of the solid solution.
Resumo:
We use density functional theory calculations with Hubbard corrections (DFT+U) to investigate electronic aspects of the interaction between ceria surfaces and gold atoms. Our results show that Au adatoms at the (111) surface of ceria can adopt Au0, Au+ or Au� electronic configurations depending on the adsorption site. The strongest adsorption sites are on top of the surface oxygen and in a bridge position between two surface oxygen atoms, and in both cases charge transfer from the gold atom to one of the Ce cations at the surface is involved. Adsorption at other sites, including the hollow sites of the surface, and an O–Ce bridging site, is weaker and does not involve charge transfer. Adsorption at an oxygen vacancy site is very strong and involves the formation of an Au� anion. We argue that the ability of gold atoms to stabilise oxygen vacancies at the ceria surface by moving into the vacancy site and attracting the excess electrons of the defect could be responsible for the enhanced reducibility of ceria surfaces in the presence of gold. Finally, we rationalise the differences in charge transfer behaviour from site to site in terms of the electrostatic potential at the surface and the coordination of the species.
Resumo:
The surface structure and morphology of the clean Re(11%21) surface has been investigated through combined low energy electron diffraction intensity analysis of data taken at multiple angles of incidence, scanning tunneling microscopy, and first-principles density functional calculations. The results show how this globally racemic surface terminates in two chirally distinct terraces, which show largescale out-of-plane atomic relaxations and in-plane lateral movement of the uppermost atoms. We further identify and discuss the initial stages of step bunching upon adsorption of oxygen that leads ultimately to the large-scale faceting of the surface. Finally, we present calculations of surface stress and the response to applied surface strain, which suggest routes to the exertion of control over the expression of chirality at the surface.