968 resultados para excitation energy level


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present measurements of the non-linear oscillations of a portal frame foundation for a non-ideal motor. We consider a three-time redundant structure with two columns, clamped in their bases and a horizontal beam. An electrical unbalanced motor is mounted at mid span of the beam. Two non-linear phenomena are studied: a) mode saturation and energy transfer between modes; b) interaction between high amplitude motions of the structure and the rotation regime of a real limited power motor. The dynamic characteristics of the structure were chosen to have one-to-two internal resonance between the anti-symmetrical mode (sway motions) and the first symmetrical mode natural frequencies. As the excitation frequency reaches near resonance conditions with the 2nd natural frequency, the amplitude of this mode grows up to a certain level and then it saturates. The surplus energy pumped into the system is transferred to the sway mode, which experiences a sudden increase in its amplitude. Energy is transformed from low amplitude high frequency motion into high amplitude low frequency motion. Such a transformation is potentially dangerous.We consider the fact that real motors, such as the one used in this study, have limited power output. In this case, this energy source is said to be non-ideal, in contrast to the ideal source whose amplitude and frequency are independent of the motion of the structure. Our experimental research detected the Sommerfeld Effect: as the motor accelerates to reach near resonant conditions, a considerable part of its output energy is consumed to generate large amplitude motions of the structure and not to increase its own angular speed. For certain parameters of the system, the motor can get stuck at resonance not having enough power to reach higher rotation regimes. If some more power is available, jump phenomena may occur from near resonance to considerably higher motor speed regimes, no stable motions being possible between these two.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Infrared-to-visible frequency upconversion through cooperative energy-transfer and thermal effects in Tb3+/Yb3+-codoped tellurite glasses excited at 1.064 mum is investigated. Bright luminescence emission around 485, 550, 590, 625 and 65 nm, identified as due to the D-5(4) --> F-7(J) (J= 6, 5, 4, 3, and 2) transitions of the terbium ions, respectively, was recorded. The excitation of the D-5(4) emitting level of the Tb3+ ions is assigned to cooperative energy-transfer from pairs of ytterbium ions.. The effect of temperature on the upconversion process was examined and the results revealed a fourfold upconversion enhancement in the 300-500 K interval. The enhancement of the upconversion process is due to the temperature dependence of the Yb3+-sensitizer absorption cross-section under anti-Stokes excitation. A rate-equation. model using multiphonon-assisted absorption for the ytterbium excitation combined with the energy migration effect between Yb-Yb pair, and Tb3+ ground-state depopulation via multiphonon excitation of the F-7(J) excited states describes quite well the experimental results. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Processes involving visible to infrared energy conversion are presented for Pr3+-Yb3+ co-doped fluoroindate glasses. The emission in the visible and infrared regions, the luminescence decay time of the Pr 3+:3P0 → 3H4 (482 nm), Pr3+:1D2 → 3H6 (800 nm), Yb3+:2F5/2 → 2F 7/2 (1044 nm) transitions and the photoluminescence excitation spectra were measured in Pr3+ samples and in Pr3+-Yb 3+ samples as a function of the Yb3+ concentration. In addition, energy transfer efficiencies were estimated from Pr3+: 3P0 and Pr3+:1D2 levels to Yb3+:2F7/2 level. Down-Conversion (DC) emission is observed due to a combination of two different processes: 1-a one-step cross relaxation (Pr3+:3P0 → 1G4; Yb3+:2F7/2 → 2F5/2) resulting in one photon emitted by Pr3+ (1G4 → 3H5) and one photon emitted by Yb3+ (2F7/2 → 2F5/2); 2-a resonant two-step first order energy transfer, where the first part of energy is transferred to Yb3+ neighbor through cross relaxation (Pr3+:3P0 → 1G4; Yb3+:2F7/2 → 2F5/2) followed by a second energy transfer step (Pr 3+:1G4 → 3H4; Yb3+:2F7/2 → 2F5/2). A third process leading to one IR photon emission to each visible photon absorbed involves cross relaxation energy transfer (Pr3+: 1D2 → 3F4; Yb 3+:2F7/2 → 2F5/2). © 2013 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effects of a Gallium Arsenide (GaAs) laser, using a high final energy of 4.8J, during muscle regeneration after cryoinjury. Thirty Wistar rats were divided into three groups: Control (C, n=10); Injured (I, n=10) and Injured and laser treated (Injured/LLLT, n=10). The cryoinjury was induced in the central region of the tibialis anterior muscle (TA). The applications of the laser (904nm, 50mW average power) were initiated 24h after injury, at energy density of 69Jcm(-1) for 48s, for 5days, to two points of the lesion. Twenty-four hours after the final application, the TA muscle was removed and frozen in liquid nitrogen to assess the general muscle morphology and the gene expression of TNF-, TGF-, MyoD, and Myogenin. The Injured/LLLT group presented a higher number of regenerating fibers and fewer degenerating fibers (P<0.05) without changes in the collagen remodeling. In addition, the Injured/LLLT group presented a significant decrease in the expression of TNF- and myogenin compared to the injured group (P<0.05). The results suggest that the GaAs laser, using a high final energy after cryoinjury, promotes muscle recovery without changing the collagen remodeling in the muscle extracellular matrix.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reactions initiated by collisions with low-energy secondary electrons has been found to be the prominent mechanism toward the radiation damage on living tissues through DNA strand breaks. Now it is widely accepted that during the interaction with these secondary species the selective breaking of chemical bonds is triggered by dissociative electron attachment (DEA), that is, the capture of the incident electron and the formation of temporary negative ion states [1,2,3]. One of the approaches largely used toward a deeper understanding of the radiation damage to DNA is through modeling of DEA with its basic constituents (nucleotide bases, sugar and other subunits). We have tried to simplify this approach and attempt to make it comprehensible at a more fundamental level by looking at even simple molecules. Studies involving organic systems such as carboxylic acids, alcohols and simple ¯ve-membered heterocyclic compounds are taken as starting points for these understanding. In the present study we investigate the role played by elastic scattering and electronic excitation of molecules on electron-driven chemical processes. Special attention is focused on the analysis of the in°uence of polarization and multichannel coupling e®ects on the magnitude of elastic and electronically inelastic cross-sections. Our aim is also to investigate the existence of resonances in the elastic and electronically inelastic channels as well as to characterize them with respect to its type (shape, core-excited or Feshbach), symmetry and position. The relevance of these issues is evaluated within the context of possible applications for the modeling of discharge environments and implications in the understanding of mutagenic rupture of DNA chains. The scattering calculations were carried out with the Schwinger multichannel method (SMC) [4] and its implementation with pseudopotentials (SMCPP) [5] at di®erent levels of approximation for impact energies ranging from 0.5 eV to 30 eV. References [1] B. Boudai®a, P. Cloutier, D. Hunting, M. A. Huels and L. Sanche, Science 287, 1658 (2000). [2] X. Pan, P. Cloutier, D. Hunting and L. Sanche, Phys. Rev. Lett. 90, 208102 (2003). [3] F. Martin, P. D. Burrow, Z. Cai, P. Cloutier, D. Hunting and L. Sanche, Phys. Rev. Lett. 93, 068101 (2004). [4] K. Takatsuka and V. McKoy, Phys. Rev. A 24, 2437 (1981); ibid. Phys. Rev. A 30, 1734 (1984). [5] M. H. F. Bettega, L. G. Ferreira and M. A. P. Lima, Phys. Rev. A 47, 1111 (1993).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The relation between the intercepted light and orchard productivity was considered linear, although this dependence seems to be more subordinate to planting system rather than light intensity. At whole plant level not always the increase of irradiance determines productivity improvement. One of the reasons can be the plant intrinsic un-efficiency in using energy. Generally in full light only the 5 – 10% of the total incoming energy is allocated to net photosynthesis. Therefore preserving or improving this efficiency becomes pivotal for scientist and fruit growers. Even tough a conspicuous energy amount is reflected or transmitted, plants can not avoid to absorb photons in excess. The chlorophyll over-excitation promotes the reactive species production increasing the photoinhibition risks. The dangerous consequences of photoinhibition forced plants to evolve a complex and multilevel machine able to dissipate the energy excess quenching heat (Non Photochemical Quenching), moving electrons (water-water cycle , cyclic transport around PSI, glutathione-ascorbate cycle and photorespiration) and scavenging the generated reactive species. The price plants must pay for this equipment is the use of CO2 and reducing power with a consequent decrease of the photosynthetic efficiency, both because some photons are not used for carboxylation and an effective CO2 and reducing power loss occurs. Net photosynthesis increases with light until the saturation point, additional PPFD doesn’t improve carboxylation but it rises the efficiency of the alternative pathways in energy dissipation but also ROS production and photoinhibition risks. The wide photo-protective apparatus, although is not able to cope with the excessive incoming energy, therefore photodamage occurs. Each event increasing the photon pressure and/or decreasing the efficiency of the described photo-protective mechanisms (i.e. thermal stress, water and nutritional deficiency) can emphasize the photoinhibition. Likely in nature a small amount of not damaged photosystems is found because of the effective, efficient and energy consuming recovery system. Since the damaged PSII is quickly repaired with energy expense, it would be interesting to investigate how much PSII recovery costs to plant productivity. This PhD. dissertation purposes to improve the knowledge about the several strategies accomplished for managing the incoming energy and the light excess implication on photo-damage in peach. The thesis is organized in three scientific units. In the first section a new rapid, non-intrusive, whole tissue and universal technique for functional PSII determination was implemented and validated on different kinds of plants as C3 and C4 species, woody and herbaceous plants, wild type and Chlorophyll b-less mutant and monocot and dicot plants. In the second unit, using a “singular” experimental orchard named “Asymmetric orchard”, the relation between light environment and photosynthetic performance, water use and photoinhibition was investigated in peach at whole plant level, furthermore the effect of photon pressure variation on energy management was considered on single leaf. In the third section the quenching analysis method suggested by Kornyeyev and Hendrickson (2007) was validate on peach. Afterwards it was applied in the field where the influence of moderate light and water reduction on peach photosynthetic performances, water requirements, energy management and photoinhibition was studied. Using solar energy as fuel for life plant is intrinsically suicidal since the high constant photodamage risk. This dissertation would try to highlight the complex relation existing between plant, in particular peach, and light analysing the principal strategies plants developed to manage the incoming light for deriving the maximal benefits as possible minimizing the risks. In the first instance the new method proposed for functional PSII determination based on P700 redox kinetics seems to be a valid, non intrusive, universal and field-applicable technique, even because it is able to measure in deep the whole leaf tissue rather than the first leaf layers as fluorescence. Fluorescence Fv/Fm parameter gives a good estimate of functional PSII but only when data obtained by ad-axial and ab-axial leaf surface are averaged. In addition to this method the energy quenching analysis proposed by Kornyeyev and Hendrickson (2007), combined with the photosynthesis model proposed by von Caemmerer (2000) is a forceful tool to analyse and study, even in the field, the relation between plant and environmental factors such as water, temperature but first of all light. “Asymmetric” training system is a good way to study light energy, photosynthetic performance and water use relations in the field. At whole plant level net carboxylation increases with PPFD reaching a saturating point. Light excess rather than improve photosynthesis may emphasize water and thermal stress leading to stomatal limitation. Furthermore too much light does not promote net carboxylation improvement but PSII damage, in fact in the most light exposed plants about 50-60% of the total PSII is inactivated. At single leaf level, net carboxylation increases till saturation point (1000 – 1200 μmolm-2s-1) and light excess is dissipated by non photochemical quenching and non net carboxylative transports. The latter follows a quite similar pattern of Pn/PPFD curve reaching the saturation point at almost the same photon flux density. At middle-low irradiance NPQ seems to be lumen pH limited because the incoming photon pressure is not enough to generate the optimum lumen pH for violaxanthin de-epoxidase (VDE) full activation. Peach leaves try to cope with the light excess increasing the non net carboxylative transports. While PPFD rises the xanthophyll cycle is more and more activated and the rate of non net carboxylative transports is reduced. Some of these alternative transports, such as the water-water cycle, the cyclic transport around the PSI and the glutathione-ascorbate cycle are able to generate additional H+ in lumen in order to support the VDE activation when light can be limiting. Moreover the alternative transports seems to be involved as an important dissipative way when high temperature and sub-optimal conductance emphasize the photoinhibition risks. In peach, a moderate water and light reduction does not determine net carboxylation decrease but, diminishing the incoming light and the environmental evapo-transpiration request, stomatal conductance decreases, improving water use efficiency. Therefore lowering light intensity till not limiting levels, water could be saved not compromising net photosynthesis. The quenching analysis is able to partition absorbed energy in the several utilization, photoprotection and photo-oxidation pathways. When recovery is permitted only few PSII remained un-repaired, although more net PSII damage is recorded in plants placed in full light. Even in this experiment, in over saturating light the main dissipation pathway is the non photochemical quenching; at middle-low irradiance it seems to be pH limited and other transports, such as photorespiration and alternative transports, are used to support photoprotection and to contribute for creating the optimal trans-thylakoidal ΔpH for violaxanthin de-epoxidase. These alternative pathways become the main quenching mechanisms at very low light environment. Another aspect pointed out by this study is the role of NPQ as dissipative pathway when conductance becomes severely limiting. The evidence that in nature a small amount of damaged PSII is seen indicates the presence of an effective and efficient recovery mechanism that masks the real photodamage occurring during the day. At single leaf level, when repair is not allowed leaves in full light are two fold more photoinhibited than the shaded ones. Therefore light in excess of the photosynthetic optima does not promote net carboxylation but increases water loss and PSII damage. The more is photoinhibition the more must be the photosystems to be repaired and consequently the energy and dry matter to allocate in this essential activity. Since above the saturation point net photosynthesis is constant while photoinhibition increases it would be interesting to investigate how photodamage costs in terms of tree productivity. An other aspect of pivotal importance to be further widened is the combined influence of light and other environmental parameters, like water status, temperature and nutrition on peach light, water and phtosyntate management.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In dieser Arbeit wurde der instabile, Neutronenarme Kern 108Sn mit Hilfe der Coulomb-Anregung bei intermediaeren Energien in inverser Kinematik studiert. Diese Methode wurde bisher zur Untersuchung der ersten angeregten 2+ Zustaende und deren E2 Zerfallsraten in Kernen mit Kernladungszahl Z< 30 angewendet. 108Sn ist somit der Kern mit der groeßten Kernladungszahl, bei dem diese Studien bisher stattfanden. Das Ziel dieses Experiments war die Messung der unbekannten reduzierten Uebergangswahrscheinlichkeit B(E2,0+ -> 2+). Der B(E2)-Wert von 0.230(57) e2b2 wurde relativ zu dem bekannten Wert des Isotops 112Sn bestimmt. Das Experiment wurde an der GSI Darmstadt mit Hilfe des RISING Detektors und des Fragmentseperators (FRS) durchgefuehrt. Sekundaere Strahlen (108Sn, 112Sn) mit einer Energie von ca. 150 MeV pro Nukleon wurden auf ein 386 mg/cm2 dickes 197Au Target geschossen. Die Projektilfragmente wurden mit Hilfe des Fragmentseparators selektiert und identifiziert. Zur Selektion des Reaktionskanals und zur Bestimmung des Winkels der gestreuten Fragmente wurde das Teilchenteleskop CATE, das sich hinter dem Target befand, verwendet. Gammastrahlung, die in Koinzidenz mit den Projektilrestkernen emittiert wurde, wurde in den Germanium-Cluster Detektoren des RISING Detektors nachgewiesen. Der gemessene B(E2,0+ -> 2+)-Wert von 108Sn ist in Uebereinstimmung mit neueren Schalenmodellrechnungen, die auf realistischen effektiven Wechselwirkungen basieren und im Rahmen eines verallgemeinerten Seniorit¨ats-Schemas erklaert werden.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The vibrational excitation of CO2 by a fast-moving O atom followed by infrared emission from the vibrationally excited CO2 has been shown to be an important cooling mechanism in the upper atmospheresof Venus, Earth and Mars. We are trying to determine more precisely the efficiency (rate coefficient) of the CO2-O vibrational energy transfer. For experimental ease the reverse reaction is used, i.e. collision of a vibrationally excited CO2 with atomic O, where we are able to convert to the atmospherically relevant reaction via a known equilibrium constant. The goal of this experiment was to measure the magnitudes of rate coefficients for vibrational energy states above the first excited state, a bending mode in CO2. An isotope of CO2, 13CO2, was used for experimental ease. The rate coefficients for given vibrational energy transfers in 13CO2 are not significantly different from 12CO2 at this level of precision. A slow-flowing gas mixture was flowed through a reaction cell: 13CO2 (vibrational specie of interest), O3(atomic O source), and Ar (bath gas). Transient diode laser absorption spectroscopy was used to monitor thechanging absorption of certain vibrational modes of 13CO2 after a UV pulse from a Nd:YAG laser was fired. Ozone absorbed the UV pulse in a process which vibrationally excited 13CO2 and liberated atomic O.Transient absorption signals were obtained by tuning the diode laser frequency to an appropriate ν3 transition and monitoring the population as a function of time following the Nd:YAG pulse. Transient absorption curves were obtained for various O atom concentrations to determine the rate coefficient of interest. Therotational states of the transitions used for detection were difficult to identify, though their short reequilibration timescale made the identification irrelevant for vibrational energy transfer measurements. The rate coefficient for quenching of the (1000) state was found to be (4 ± 8) x 10-12 cm3 s-1 which is the same order of magnitude as the lowest-energy bend-excited mode: (1.8 ± 0.3) x 10-12 cm3 s-1. More data is necessary before it can be certain that the numerical difference between the two is real.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The design of upconversion phosphors with higher quantum yield requires a deeper understanding of the detailed energy transfer and upconversion processes between active ions inside the material. Rate equations can model those processes by describing the populations of the energy levels of the ions as a function of time. However, this model presents some drawbacks: energy migration is assumed to be infinitely fast, it does not determine the detailed interaction mechanism (multipolar or exchange), and it only provides the macroscopic averaged parameters of interaction. Hence, a rate equation model with the same parameters cannot correctly predict the time evolution of upconverted emission and power dependence under a wide range of concentrations of active ions. We present a model that combines information about the host material lattice, the concentration of active ions, and a microscopic rate equation system. The extent of energy migration is correctly taken into account because the energy transfer processes are described on the level of the individual ions. This model predicts the decay curves, concentration, and excitation power dependences of the emission. This detailed information can be used to predict the optimal concentration that results in the maximum upconverted emission.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Oxygen 1s excitation and ionization processes in the CO2 molecule have been studied with dispersed and non-dispersed fluorescence spectroscopy as well as with the vacuum ultraviolet (VUV) photon?photoion coincidence technique. The intensity of the neutral O emission line at 845 nm shows particular sensitivity to core-to-Rydberg excitations and core?valence double excitations, while shape resonances are suppressed. In contrast, the partial fluorescence yield in the wavelength window 300?650 nm and the excitation functions of selected O+ and C+ emission lines in the wavelength range 400?500 nm display all of the absorption features. The relative intensity of ionic emission in the visible range increases towards higher photon energies, which is attributed to O 1s shake-off photoionization. VUV photon?photoion coincidence spectra reveal major contributions from the C+ and O+ ions and a minor contribution from C2+. No conclusive changes in the intensity ratios among the different ions are observed above the O 1s threshold. The line shape of the VUV?O+ coincidence peak in the mass spectrum carries some information on the initial core excitation

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This research studied the effects of additional fiber in the rearing phase diets on egg production, gastrointestinal tract (GIT) traits, and body measurements of brown egg-laying hens fed diets varying in energy concentration from 17 to 46 wk of age. The experiment was completely randomized with 10 treatments arranged as a 5 × 2 factorial with 5 rearing phase diets and 2 laying phase diets. During the rearing phase, treatments consisted of a control diet based on cereals and soybean meal and 4 additional diets with a combination of 2 fiber sources (cereal straw and sugar beet pulp, SBP) at 2 levels (2 and 4%). During the laying phase, diets differed in energy content (2,650 vs. 2,750 kcal AMEn/kg) but had the same amino acid content per unit of energy. The rearing diet did not affect any production trait except egg production that was lower in birds fed SBP than in birds fed straw (91.6 and 94.1%, respectively; P < 0.05). Laying hens fed the high energy diet had lower feed intake (P < 0.001), better feed conversion (P < 0.01), and greater BW gain (P < 0.05) than hens fed the low energy diet but egg production and egg weight were not affected. At 46 wk of age, none of the GIT traits was affected by previous dietary treatment. At this age, hen BW was positively related with body length (r = 0.500; P < 0.01), tarsus length (r = 0.758; P < 0.001), and body mass index (r = 0.762; P < 0.001) but no effects of type of diet on these traits were detected. In summary, the inclusion of up to 4% of a fiber source in the rearing diets did not affect GIT development of the hens but SBP reduced egg production. An increase in the energy content of the laying phase diet reduced ADFI and improved feed efficiency but did not affect any of the other traits studied.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the absence of lasers approaching trapped ion clock transitions in sharpness we propose to replace the 12.49 m laser field exciting the D3/2-D5/2 transition of the single Ba+ ion A in D3/2 with the near-field of a close by identical ion B in the excited D5/2 state. We tune the frequency of the near-field by the differential Stark shift generated when the center of mass of the tuned ions is slightly moved out of the trap center by a small bias voltage. We demonstrate that the resultant resonant energy exchange can be made considerably faster than the natural lifetime of either metastable level and show how it might be detected.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have studied the radial dependence of the energy deposition of the secondary electron generated by swift proton beams incident with energies T = 50 keV–5 MeV on poly(methylmethacrylate) (PMMA). Two different approaches have been used to model the electronic excitation spectrum of PMMA through its energy loss function (ELF), namely the extended-Drude ELF and the Mermin ELF. The singly differential cross section and the total cross section for ionization, as well as the average energy of the generated secondary electrons, show sizeable differences at T ⩽ 0.1 MeV when evaluated with these two ELF models. In order to know the radial distribution around the proton track of the energy deposited by the cascade of secondary electrons, a simulation has been performed that follows the motion of the electrons through the target taking into account both the inelastic interactions (via electronic ionizations and excitations as well as electron-phonon and electron trapping by polaron creation) and the elastic interactions. The radial distribution of the energy deposited by the secondary electrons around the proton track shows notable differences between the simulations performed with the extended-Drude ELF or the Mermin ELF, being the former more spread out (and, therefore, less peaked) than the latter. The highest intensity and sharpness of the deposited energy distributions takes place for proton beams incident with T ~ 0.1–1 MeV. We have also studied the influence in the radial distribution of deposited energy of using a full energy distribution of secondary electrons generated by proton impact or using a single value (namely, the average value of the distribution); our results show that differences between both simulations become important for proton energies larger than ~0.1 MeV. The results presented in this work have potential applications in materials science, as well as hadron therapy (due to the use of PMMA as a tissue phantom) in order to properly consider the generation of electrons by proton beams and their subsequent transport and energy deposition through the target in nanometric scales.