889 resultados para energy simulation
Resumo:
A range of societal issues have been caused by fossil fuel consumption in the transportation sector in the United States (U.S.), including health related air pollution, climate change, the dependence on imported oil, and other oil related national security concerns. Biofuels production from various lignocellulosic biomass types such as wood, forest residues, and agriculture residues have the potential to replace a substantial portion of the total fossil fuel consumption. This research focuses on locating biofuel facilities and designing the biofuel supply chain to minimize the overall cost. For this purpose an integrated methodology was proposed by combining the GIS technology with simulation and optimization modeling methods. The GIS based methodology was used as a precursor for selecting biofuel facility locations by employing a series of decision factors. The resulted candidate sites for biofuel production served as inputs for simulation and optimization modeling. As a precursor to simulation or optimization modeling, the GIS-based methodology was used to preselect potential biofuel facility locations for biofuel production from forest biomass. Candidate locations were selected based on a set of evaluation criteria, including: county boundaries, a railroad transportation network, a state/federal road transportation network, water body (rivers, lakes, etc.) dispersion, city and village dispersion, a population census, biomass production, and no co-location with co-fired power plants. The simulation and optimization models were built around key supply activities including biomass harvesting/forwarding, transportation and storage. The built onsite storage served for spring breakup period where road restrictions were in place and truck transportation on certain roads was limited. Both models were evaluated using multiple performance indicators, including cost (consisting of the delivered feedstock cost, and inventory holding cost), energy consumption, and GHG emissions. The impact of energy consumption and GHG emissions were expressed in monetary terms to keep consistent with cost. Compared with the optimization model, the simulation model represents a more dynamic look at a 20-year operation by considering the impacts associated with building inventory at the biorefinery to address the limited availability of biomass feedstock during the spring breakup period. The number of trucks required per day was estimated and the inventory level all year around was tracked. Through the exchange of information across different procedures (harvesting, transportation, and biomass feedstock processing procedures), a smooth flow of biomass from harvesting areas to a biofuel facility was implemented. The optimization model was developed to address issues related to locating multiple biofuel facilities simultaneously. The size of the potential biofuel facility is set up with an upper bound of 50 MGY and a lower bound of 30 MGY. The optimization model is a static, Mathematical Programming Language (MPL)-based application which allows for sensitivity analysis by changing inputs to evaluate different scenarios. It was found that annual biofuel demand and biomass availability impacts the optimal results of biofuel facility locations and sizes.
Resumo:
This paper studies the energy-efficiency and service characteristics of a recently developed energy-efficient MAC protocol for wireless sensor networks in simulation and on a real sensor hardware testbed. This opportunity is seized to illustrate how simulation models can be verified by cross-comparing simulation results with real-world experiment results. The paper demonstrates that by careful calibration of simulation model parameters, the inevitable gap between simulation models and real-world conditions can be reduced. It concludes with guidelines for a methodology for model calibration and validation of sensor network simulation models.
Resumo:
Energy efficiency has become an important research topic in intralogistics. Especially in this field the focus is placed on automated storage and retrieval systems (AS/RS) utilizing stacker cranes as these systems are widespread and consume a significant portion of the total energy demand of intralogistical systems. Numerical simulation models were developed to calculate the energy demand rather precisely for discrete single and dual command cycles. Unfortunately these simulation models are not suitable to perform fast calculations to determine a mean energy demand value of a complete storage aisle. For this purpose analytical approaches would be more convenient but until now analytical approaches only deliver results for certain configurations. In particular, for commonly used stacker cranes equipped with an intermediate circuit connection within their drive configuration there is no analytical approach available to calculate the mean energy demand. This article should address this research gap and present a calculation approach which enables planners to quickly calculate the energy demand of these systems.
Resumo:
The Internet of Things (IoT) is attracting considerable attention from the universities, industries, citizens and governments for applications, such as healthcare, environmental monitoring and smart buildings. IoT enables network connectivity between smart devices at all times, everywhere, and about everything. In this context, Wireless Sensor Networks (WSNs) play an important role in increasing the ubiquity of networks with smart devices that are low-cost and easy to deploy. However, sensor nodes are restricted in terms of energy, processing and memory. Additionally, low-power radios are very sensitive to noise, interference and multipath distortions. In this context, this article proposes a routing protocol based on Routing by Energy and Link quality (REL) for IoT applications. To increase reliability and energy-efficiency, REL selects routes on the basis of a proposed end-to-end link quality estimator mechanism, residual energy and hop count. Furthermore, REL proposes an event-driven mechanism to provide load balancing and avoid the premature energy depletion of nodes/networks. Performance evaluations were carried out using simulation and testbed experiments to show the impact and benefits of REL in small and large-scale networks. The results show that REL increases the network lifetime and services availability, as well as the quality of service of IoT applications. It also provides an even distribution of scarce network resources and reduces the packet loss rate, compared with the performance of well-known protocols.
Resumo:
Engineers are confronted with the energy demand of active medical implants in patients with increasing life expectancy. Scavenging energy from the patient’s body is envisioned as an alternative to conventional power sources. Joining in this effort towards human-powered implants, we propose an innovative concept that combines the deformation of an artery resulting from the arterial pressure pulse with a transduction mechanism based on magneto-hydrodynamics. To overcome certain limitations of a preliminary analytical study on this topic, we demonstrate here a more accurate model of our generator by implementing a three-dimensional multiphysics finite element method (FEM) simulation combining solid mechanics, fluid mechanics, electric and magnetic fields as well as the corresponding couplings. This simulation is used to optimize the generator with respect to several design parameters. A first validation is obtained by comparing the results of the FEM simulation with those of the analytical approach adopted in our previous study. With an expected overall conversion efficiency of 20% and an average output power of 30 μW, our generator outperforms previous devices based on arterial wall deformation by more than two orders of magnitude. Most importantly, our generator provides sufficient power to supply a cardiac pacemaker.
Resumo:
Cloud Computing is an enabler for delivering large-scale, distributed enterprise applications with strict requirements in terms of performance. It is often the case that such applications have complex scaling and Service Level Agreement (SLA) management requirements. In this paper we present a simulation approach for validating and comparing SLA-aware scaling policies using the CloudSim simulator, using data from an actual Distributed Enterprise Information System (dEIS). We extend CloudSim with concurrent and multi-tenant task simulation capabilities. We then show how different scaling policies can be used for simulating multiple dEIS applications. We present multiple experiments depicting the impact of VM scaling on both datacenter energy consumption and dEIS performance indicators.
Resumo:
The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of root s = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K-s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5 % for central isolated hadrons and 1-3 % for the final calorimeter jet energy scale.
Resumo:
The measurement of the jet energy resolution is presented using data recorded with the ATLAS detector in proton-proton collisions at root s = 7 TeV. The sample corresponds to an integrated luminosity of 35 pb(-1). Jets are reconstructed from energy deposits measured by the calorimeters and calibrated using different jet calibration schemes. The jet energy resolution is measured with two different in situ methods which are found to be in agreement within uncertainties. The total uncertainties on these measurements range from 20 % to 10 % for jets within vertical bar y vertical bar < 2.8 and with transverse momenta increasing from 30 GeV to 500 GeV. Overall, the Monte Carlo simulation of the jet energy resolution agrees with the data within 10 %.
Resumo:
This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb−1 of LHC proton–proton collision data taken at centre-of-mass energies of √s = 7 and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the Z resonance is used to set the absolute energy scale. For electrons from Z decays, the achieved calibration is typically accurate to 0.05% in most of the detector acceptance, rising to 0.2% in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2–1% for electrons with a transverse energy of 10 GeV, and is on average 0.3% for photons. The detector resolution is determined with a relative inaccuracy of less than 10% for electrons and photons up to 60 GeV transverse energy, rising to 40% for transverse energies above 500 GeV.
Resumo:
Double-differential dijet cross-sections measured in pp collisions at the LHC with a 7TeV centre-of-mass energy are presented as functions of dijet mass and half the rapidity separation of the two highest-pT jets. These measurements are obtained using data corresponding to an integrated luminosity of 4.5 fb−1, recorded by the ATLAS detector in 2011. The data are corrected for detector effects so that cross-sections are presented at the particle level. Cross-sections are measured up to 5TeV dijet mass using jets reconstructed with the anti-kt algorithm for values of the jet radius parameter of 0.4 and 0.6. The cross-sections are compared with next-to-leading-order perturbative QCD calculations by NLOJet++ corrected to account for non-perturbative effects. Comparisons with POWHEG predictions, using a next-to-leading-order matrix element calculation interfaced to a partonshower Monte Carlo simulation, are also shown. Electroweak effects are accounted for in both cases. The quantitative comparison of data and theoretical predictions obtained using various parameterizations of the parton distribution functions is performed using a frequentist method. In general, good agreement with data is observed for the NLOJet++ theoretical predictions when using the CT10, NNPDF2.1 and MSTW 2008 PDF sets. Disagreement is observed when using the ABM11 and HERAPDF1.5 PDF sets for some ranges of dijet mass and half the rapidity separation. An example setting a lower limit on the compositeness scale for a model of contact interactions is presented, showing that the unfolded results can be used to constrain contributions to dijet production beyond that predicted by the Standard Model.
Resumo:
An autonomous energy source within a human body is of key importance in the development of medical implants. This work deals with the modelling and the validation of an energy harvesting device which converts the myocardial contractions into electrical energy. The mechanism consists of a clockwork from a commercially available wrist watch. We developed a physical model which is able to predict the total amount of energy generated when applying an external excitation. For the validation of the model, a custom-made hexapod robot was used to accelerate the harvesting device along a given trajectory. We applied forward kinematics to determine the actual motion experienced by the harvesting device. The motion provides translational as well as rotational motion information for accurate simulations in three-dimensional space. The physical model could be successfully validated.
Resumo:
During the last decade wireless mobile communications have progressively become part of the people’s daily lives, leading users to expect to be “alwaysbest-connected” to the Internet, regardless of their location or time of day. This is indeed motivated by the fact that wireless access networks are increasingly ubiquitous, through different types of service providers, together with an outburst of thoroughly portable devices, namely laptops, tablets, mobile phones, among others. The “anytime and anywhere” connectivity criterion raises new challenges regarding the devices’ battery lifetime management, as energy becomes the most noteworthy restriction of the end-users’ satisfaction. This wireless access context has also stimulated the development of novel multimedia applications with high network demands, although lacking in energy-aware design. Therefore, the relationship between energy consumption and the quality of the multimedia applications perceived by end-users should be carefully investigated. This dissertation addresses energy-efficient multimedia communications in the IEEE 802.11 standard, which is the most widely used wireless access technology. It advances the literature by proposing a unique empirical assessment methodology and new power-saving algorithms, always bearing in mind the end-users’ feedback and evaluating quality perception. The new EViTEQ framework proposed in this thesis, for measuring video transmission quality and energy consumption simultaneously, in an integrated way, reveals the importance of having an empirical and high-accuracy methodology to assess the trade-off between quality and energy consumption, raised by the new end-users’ requirements. Extensive evaluations conducted with the EViTEQ framework revealed its flexibility and capability to accurately report both video transmission quality and energy consumption, as well as to be employed in rigorous investigations of network interface energy consumption patterns, regardless of the wireless access technology. Following the need to enhance the trade-off between energy consumption and application quality, this thesis proposes the Optimized Power save Algorithm for continuous Media Applications (OPAMA). By using the end-users’ feedback to establish a proper trade-off between energy consumption and application performance, OPAMA aims at enhancing the energy efficiency of end-users’ devices accessing the network through IEEE 802.11. OPAMA performance has been thoroughly analyzed within different scenarios and application types, including a simulation study and a real deployment in an Android testbed. When compared with the most popular standard power-saving mechanisms defined in the IEEE 802.11 standard, the obtained results revealed OPAMA’s capability to enhance energy efficiency, while keeping end-users’ Quality of Experience within the defined bounds. Furthermore, OPAMA was optimized to enable superior energy savings in multiple station environments, resulting in a new proposal called Enhanced Power Saving Mechanism for Multiple station Environments (OPAMA-EPS4ME). The results of this thesis highlight the relevance of having a highly accurate methodology to assess energy consumption and application quality when aiming to optimize the trade-off between energy and quality. Additionally, the obtained results based both on simulation and testbed evaluations, show clear benefits from employing userdriven power-saving techniques, such as OPAMA, instead of IEEE 802.11 standard power-saving approaches.
Resumo:
Chinese government commits to reach its peak carbon emissions before 2030, which requires China to implement new policies. Using a CGE model, this study conducts simulation studies on the functions of an energy tax and a carbon tax and analyzes their effects on macro-economic indices. The Chinese economy is affected at an acceptable level by the two taxes. GDP will lose less than 0.8% with a carbon tax of 100, 50, or 10 RMB/ton CO2 or 5% of the delivery price of an energy tax. Thus, the loss of real disposable personal income is smaller. Compared with implementing a single tax, a combined carbon and energy tax induces more emission reductions with relatively smaller economic costs. With these taxes, the domestic competitiveness of energy intensive industries is improved. Additionally, we found that the sooner such taxes are launched, the smaller the economic costs and the more significant the achieved emission reductions.
Study of rapid ionisation for simulation of soft X-ray lasers with the 2D hydro-radiative code ARWEN
Resumo:
We present our fast ionisation routine used to study transient softX-raylasers with ARWEN, a two-dimensional hydrodynamic code incorporating adaptative mesh refinement (AMR) and radiative transport. We compute global rates between ion stages assuming an effective temperature between singly-excited levels of each ion. A two-step method is used to obtain in a straightforward manner the variation of ion populations over long hydrodynamic time steps. We compare our model with existing theoretical results both stationary and transient, finding that the discrepancies are moderate except for large densities. We simulate an existing Molybdenum Ni-like transient softX-raylaser with ARWEN. Use of the fast ionisation routine leads to a larger increase in temperature and a larger gain zone than when LTE datatables are used.