963 resultados para electro-olfactogram


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A passively mode-locked optically-pumped InGaAs/GaAs quantum well laser with an intracavity semiconductor saturable absorber mirror emits sub-100-fs pulses. Pulse energy declines steeply as pulse duration is reduced below 100 fs due to gain saturation. © 2010 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this letter, the uniform lying helix (ULH) liquid crystal texture, required for the flexoelectro-optic effect, is polymer stabilized by the addition of a small percentage of reactive mesogen to a high-tilt-angle (φ>60°) bimesogenic chiral nematic host. The electro-optic response is measured for a range of reactive mesogen concentration mixtures, and compared to the large-tilt-angle switch of the pure chiral nematic mixture. The optimum concentration of reactive mesogen, which is found to provide ample stabilization of the texture with minimal impact on the electro-optic response, is found to be approximately 3%. Our results indicate that polymer stabilization of the ULH texture using a very low concentration of reactive mesogen is a reliable way of ruggedizing flexoelectro-optic devices without interfering significantly with the electro-optics of the effect, negating the need for complicated surface alignment patterns or surface-only polymerization. The polymer stabilization is shown to reduce the temperature dependence of the flexoelectro-optic response due to "pinning" of the chiral nematic helical pitch. This is a restriction of the characteristic thermochromic behavior of the chiral nematic. Furthermore, selection of the temperature at which the sample is ultraviolet cured allows the tilt angle to be optimized for the entire chiral nematic temperature range. The response time, however, remains more sensitive to operating temperature than curing temperature. This allows the sample to be cured at low temperature and operated at high temperature, providing simultaneous optimization of these two previously antagonistic performance aspects. © 2006 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While it is well known that it is possible to determine the effective flexoelectric coefficient of nematic liquid crystals using hybrid cells [1], this technique can be difficult due to the necessity of using a D.C. field. We have used a second method[2], requiring an A.C. field, to determine this parameter and here we compare the two techniques. The A.C. method employs the linear flexoelectrically induced linear electro-optic switching mechanism observed in chiral nematics. In order to use this second technique a chiral nematic phase is induced in an achiral nematic by the addition of a small amount of chiral additive (∼3% concentration w/w) to give helix pitch lengths of typically 0.5-1.0 μm. We note that the two methods can be used interchangeably, since they produce similar results, and we conclude with a discussion of their relative merits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present for the first time a comprehensive study of the static and dynamic properties of a coolerless tunable three-section DBR laser. Wavelength tuning and thermal drift under uncooled conditions are investigated. Variance of modulation bandwidth with temperature rise and wavelength control is studied, and then verified by uncooled direct modulation performance with clear open eye diagrams. Satisfactory direct modulation is demonstrated at bit rate of up to 6Gbit/s, which is believed to be the fastest out of devices of similar structure so far.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 4Gbit/s directly modulated DBR laser is demonstrated with nanometre scale thermal tuning over an extended 20-70°C temperature range. >40dB side mode suppression over the entire temperature range is achieved. © 2005 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes coupled-effect simulations of smart micro gas-sensors based on standard BiCMOS technology. The smart sensor features very low power consumption, high sensitivity and potential low fabrication cost achieved through full CMOS integration. For the first time the micro heaters are made of active CMOS elements (i.e. MOSFET transistors) and embedded in a thin SOI membrane consisting of Si and SiO2 thin layers. Micro gas-sensors such as chemoresistive, microcalorimeteric and Pd/polymer gate FET sensors can be made using this technology. Full numerical analyses including 3D electro-thermo-mechanical simulations, in particular stress and deflection studies on the SOI membranes are presented. The transducer circuit design and the post-CMOS fabrication process, which includes single sided back-etching, are also reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a new generation of integrated solid-state gas-sensors embedded in SOI micro-hotplates. The micro-hotplates lie on a SOI membrane and consist of MOSFET heaters that elevate the operating temperature, through self-heating, of a gas sensitive material. These sensors are fully compatible with SOI CMOS or BiCMOS technologies, offer ultra-low power consumption (under 100 mW), high sensitivity, low noise, low unit cost, reproducibility and reliability through the use of on-chip integration. In addition, the new integrated sensors offer a nearly uniform temperature distribution over the active area at its operating temperatures at up to about 300-350°C. This makes SOI-based gas-sensing devices particularly attractive for use in handheld battery-operated gas monitors. This paper reports on the design of a chemo-resistive gas sensor and proposes for the first time an intelligent SOI membrane microcalorimeter using active micro-FET heaters and temperature sensors. A comprehensive set of numerical and analogue simulations is also presented including complex 2D and 3D electro-thermal numerical analyses. © 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes multiple field-coupled simulations and device characterization of fully CMOS-MEMS-compatible smart gas sensors. The sensor structure is designated for gas/vapour detection at high temperatures (>300 °C) with low power consumption, high sensitivity and competent mechanic robustness employing the silicon-on-insulator (SOI) wafer technology, CMOS process and micromachining techniques. The smart gas sensor features micro-heaters using p-type MOSFETs or polysilicon resistors and differentially transducing circuits for in situ temperature measurement. Physical models and 3D electro-thermo-mechanical simulations of the SOI micro-hotplate induced by Joule, self-heating, mechanic stress and piezoresistive effects are provided. The electro-thermal effect initiates and thus affects electronic and mechanical characteristics of the sensor devices at high temperatures. Experiments on variation and characterization of micro-heater resistance, power consumption, thermal imaging, deformation interferometry and dynamic thermal response of the SOI micro-hotplate have been presented and discussed. The full integration of the smart gas sensor with automatically temperature-reading ICs demonstrates the lowest power consumption of 57 mW at 300 °C and fast thermal response of 10 ms. © 2008 IOP Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

electrostatic torsional nano-electro-mechanical systems (NEMS) actuators is analyzed in the paper. The dependence of the critical tilting angle and voltage is investigated on the sizes of structure with the consideration of vdW effects. The pull-in phenomenon without the electrostatic torque is studied, and a critical pull-in gap is derived. A dimensionless equation of motion is presented, and the qualitative analysis of it shows that the equilibrium points of the corresponding autonomous system include center points, stable focus points, and unstable saddle points. The Hopf bifurcation points and fork bifurcation points also exist in the system. The phase portraits connecting these equilibrium points exhibit periodic orbits, heteroclinic orbits, as well as homoclinic orbits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports the fabrication and electrical characterization of high tuning range AlSi RF MEMS capacitors. We present experimental results obtained by a surface micromachining process that uses dry etching of sacrificial amorphous silicon to release Al-1%Si membranes and has a low thermal budget (<450 °C) being compatible with CMOS post-processing. The proposed silicon sacrificial layer dry etching (SSLDE) process is able to provide very high Si etch rates (3-15 μm/min, depending on process parameters) with high Si: SiO2 selectivity (>10,000:1). Single- and double-air-gap MEMS capacitors, as well as some dedicated test structures needed to calibrate the electro-mechanical parameters and explore the reliability of the proposed technology, have been fabricated with the new process. S-parameter measurements from 100 MHz up to 2 GHz have shown a capacitance tuning range higher than 100% with the double-air-gap architecture. The tuning range can be enlarged with a proper DC electrical bias of the capacitor electrodes. Finally, the reported results make the proposed MEMS tuneable capacitor a good candidate for above-IC integration in communications applications. © 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lead magnesium niobate-lead titanate (PMN-PT) is an intriguing candidate for applications in many electronic devices such as multi-layer capacitors, electro-mechanical transducers etc. because of its high dielectric constant, low dielectric loss and high strain near the Curie temperature. As an extension of our previous work on Ta-doped PMNT-PT aimed at optimizing the performance and reducing the cost, this paper focuses on the effect of Pb volatilization on the dielectric properties of 0.77Pb(Mg1/3(Nb0.9Ta0.1)2/3)O3-0.23PbTiO3. The dielectric constant and loss of the samples are measured at different frequencies and different temperatures. The phase purity of this compound is determined by X-ray diffraction pattern. It is found that the volatilization during sintering does influence the phase formation and dielectric properties. The best condition is sintering with 0.5 g extra PbO around a 4 g PMNT-PT sample.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An 80 GSPS photonic ADC system is demonstrated, using broadband MLL and dispersive fibre to form a continuous waveform with time-wavelength mapping, and AWG to channelise. Tests are carried out for RF signals up to 10GHz. © 2005 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Characterization of polymer nanocomposites by electron microscopy has been attempted since last decade. Main drives for this effort were analysis of dispersion and alignment of fillers in the matrix. Sample preparation, imaging modes and irradiation conditions became particularly challenging due to the small dimension of the fillers and also to the mechanical and conductive differences between filler and matrix. To date, no standardized dispersion and alignment process or characterization procedures exist in the trade. Review of current state of the art on characterization of polymer nanocomposites suggests that the most innovative electron and ion beam microscopy has not yet been deployed in this material system. Additionally, recently discovered functionalities of these composites, such as electro and photoactuation are amenable to the investigation of the atomistic phenomena by in situ transmission electron microscopy. The possibility of using innovative thinning techniques is presented. © 2010 Copyright SPIE - The International Society for Optical Engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a method is presented to calculate the plane electro-elastic fields in piezoelectric materials with multiple cracks. The cracks may be distributed randomly in locations, orientations and sizes. In the method, each crack is treated as a continuous distributed dislocations with the density function to be determined according to the conditions of external loads and crack surfaces. Some numerical examples are given to show the interacting effect among multiple cracks.