969 resultados para dye-sensitized solar cell


Relevância:

100.00% 100.00%

Publicador:

Resumo:

O presente trabalho tem como objetivo investigar as características de filmes de SnO2 depositados em substrato de vidro borosilicato por um processo de silk-screen modificado para obtenção de espessura fina compatível com a aplicação em células solares policristalinas de baixo custo. O filme de SnO2 é um dos mais apropriados para obtenção de vidro TCO (transparent conductive oxide) para uso em células solares devido a sua baixa resistividade elétrica e alta transmitância, sendo quimicamente inerte, mecanicamente duro e tem resistência a altas temperaturas, o que facilita então a calcinação das amostras entre 500º C a 550º C. Os filmes foram obtidos a partir de uma solução precursora básica, preparada pela dissolução de SnCl2.2H2O em Etanol (99,5 %). Foi realizado um planejamento fatorial 2(3-1) para analisar a influência dos parâmetros concentração da solução precursora (CETN), temperatura de calcinação (TC) e taxa de aquecimento (tX) na calcinação, sendo a concentração CETN o parâmetro que apresentou maior efeito sobre os parâmetros de respostas investigados: espessura do filme (ω), resistividade de superfície (ρ) e a transmitância relativa (θ). Foi possível obter com a metodologia utilizada, filmes com espessuras da ordem de 1 Nm com resistividade de superfície de 10 / e transmitância relativa entre 70 e 80 %.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural, optical, electro and photoelectrochemical properties of amorphous and crystalline sol-gel Nb2O5 coatings have been determined. The coatings are n-type semiconductor with indirect allowed transition and present an overall low quantum efficiency (phi < 4%) for UV light to electric conversion. The photoconducting behavior of the coatings is discussed within the framework of the Gartner and Sodergren models. Improvement can be foreseen if Nb2O5 coatings can be made of 10-20 nm size nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bladder cancer is a common malignancy worldwide. Despite the increased use of cisplatin-based combination therapy, the outcomes for patients with advanced disease remain poor. Recently, altered activation of the PI3K/Akt/mTOR pathway has been associated with reduced patient survival and advanced stage of bladder cancer, making its upstream or downstream components attractive targets for therapeutic intervention. In the present study, we showed that treatment with DTCM-glutaramide, a piperidine that targets PDK1, results in reduced proliferation, diminished cell migration and G1 arrest in 5637 and T24 bladder carcinoma cells. Conversely, no apoptosis, necrosis or autophagy were detected after treatment, suggesting that reduced cell numbers in vitro are a result of diminished proliferation rather than cell death. Furthermore previous exposure to 10 mu g/ml DTCM-glutarimide sensitized both cell lines to ionizing radiation. Although more studies are needed to corroborate our findings, our results indicate that PDK1 may be useful as a therapeutic target to prevent progression and abnormal tissue dissemination of urothelial carcinomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The widespread use of poly(3-hexylthiophene) (P3HT) in the active layers of organic solar cells indicates that it possesses chemical stability and solubility suitable for such an application. However, it would be desirable to have a material that can maintain these properties but with a smaller bandgap, which would lead to more efficient energy harvesting of the solar spectrum. Fifteen P3HT derivatives were studied using the Density Functional Theory. The conclusion is that it is possible to obtain compounds with significantly smaller bandgaps and with solubility and stability similar to that of P3HT, mostly through the binding of oxygen atoms or conjugated organic groups to the thiophenic ring. © 2013 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a study on the design of a photovoltaic system connected to the grid.It discussed the main characteristics of the solar cell which is the basic component for the manufacture of solar modulethe main components of the photovoltaic system and the steps of the photovoltaic and electrical design of the system, ranging from the choice of the photovoltaic module to the dimensioning of the components of the electrical installation.In addition to the technical design, this work contains a complete comparative analysis of the current situation of photovoltaic generation distributed in Brazil and Portugal, through incentive programs to energy use as well as current legislation in both countries

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a study on the design of a photovoltaic system connected to the grid.It discussed the main characteristics of the solar cell which is the basic component for the manufacture of solar modulethe main components of the photovoltaic system and the steps of the photovoltaic and electrical design of the system, ranging from the choice of the photovoltaic module to the dimensioning of the components of the electrical installation.In addition to the technical design, this work contains a complete comparative analysis of the current situation of photovoltaic generation distributed in Brazil and Portugal, through incentive programs to energy use as well as current legislation in both countries

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ground state interactions and excited states and transients formed after photolysis and photosensitization of 2-ethylaminodiphenylborinate (2APB) were studied by various techniques. The UV spectrum shows a large absorption band at 235 nm (epsilon = 14,500 M-1 cm(-1)) with a shoulder at 260 nm. The fluorescence spectra show increasing emission intensity with maximum at 300 nm, which shifts to the red up to 10(-3) M concentrations. At higher concentrations, the emission intensity decreases, probably due to the formation of aggregates. UV excitation in deareated solutions shows the formation of two transients at 300 and 360 nm. The latter has a lifetime of 5.7 mu s in ethanol and is totally quenched in the presence of oxygen and assigned to the triplet state of 2APB. The 300 nm peak is not affected by oxygen, has a lifetime in the order of milliseconds, and corresponds to a boron-centered radical species originated from the singlet state. A boron radical can also be obtained by electron transfer from triplet Safranine to the borinate (k(q) = 9.7 x 10(7) M-1 s(-1)) forming the semioxidized form of the dye. EPR experiments using DMPO show that dye-sensitized and direct UV-photolysis of 2ABP renders initially arylboron-centered radicals. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bladder cancer is a common malignancy worldwide. Despite the increased use of cisplatin-based combination therapy, the outcomes for patients with advanced disease remain poor. Recently, altered activation of the PI3K/Akt/mTOR pathway has been associated with reduced patient survival and advanced stage of bladder cancer, making its upstream or downstream components attractive targets for therapeutic intervention. In the present study, we showed that treatment with DTCM-glutaramide, a piperidine that targets PDK1, results in reduced proliferation, diminished cell migration and G1 arrest in 5637 and T24 bladder carcinoma cells. Conversely, no apoptosis, necrosis or autophagy were detected after treatment, suggesting that reduced cell numbers in vitro are a result of diminished proliferation rather than cell death. Furthermore previous exposure to 10 mu g/ml DTCM-glutarimide sensitized both cell lines to ionizing radiation. Although more studies are needed to corroborate our findings, our results indicate that PDK1 may be useful as a therapeutic target to prevent progression and abnormal tissue dissemination of urothelial carcinomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The down-conversion process in Tb3+-Yb3+ co-doped Calibo glasses was studied. The emission, excitation and time-resolved measurements indicated the existence of an energy conversion through the excitation of Tb3+ ions to near-infrared emission by Yb3+ ions. The emission intensity dependence on excitation power confirms that the one-photon process is responsible for the Yb3+ emission. An enhanced Yb3+ emission was observed with Yb3+ doping and an optimal energy transfer efficiency of 32% was obtained before reaching near-infrared emission quenching. The mechanism of the non-resonant energy transfer from Tb3+ to Yb3+ is discussed in terms of the Tb3+-Yb3+ cross-relaxation and multiphonon decay processes. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since conjugated polymers, i.e. polymers with spatially extended pi-bonding system have offered unique physical properties, unobtainable for conventional polymers, significant research efforts directed to better understanding of their chemistry, physics and engineering have been undertaken in the past two and half decades. In this thesis we discuss the synthesis, characterisation and investigation of conjugated semiconducting organic materials for electronic applications. Owing to the versatile properties of metal-organic hybrid materials, there is significant promise that these materials can find use in optical or electronic devices in the future. In addressing this issue, the synthesis of bisthiazol-2-yl-amine (BTA) based polymers is attempted and their metallation is investigated. The focus of this work has been to examine whether the introduction of coordinating metal ions onto the polymer backbone can enhance the conductivity of the material. These studies can provide a basis for understanding the photophysical properties of metal-organic polymers based on BTA. In their neutral (undoped) form conjugated polymers are semiconductors and can be used as active components of plastics electronics such as polymer light-emitting diodes, polymer lasers, photovoltaic cells, field-effect transistors, etc. Toward this goal, it is an objective of the study to synthesize and characterize new classes of luminescent polymeric materials based on anthracene and phenanthrene moieties. A series of materials based on polyphenylenes and poly(phenyleneethynylene)s with 9,10-anthrylene subunits are not only presented but the synthesis and characterization of step-ladder and ladder poly(p-phenylene-alt-anthrylene)s containing 9,10-anthrylene building groups within the main chain are also explored. In a separate work, a series of soluble poly-2,7- and 3,6-phenanthrylenes are synthesized. This can enable us to do a systematic investigation into the optical and electronic properties of PPP-like versus PPV-like. Besides, the self-organization of 3,6-linked macrocyclic triphenanthrylene has been investigated by 2D wide-angle X-ray scattering experiments performed on extruded filaments in solution and in the bulk. Additionally, from the concept that donor-acceptor materials can induce efficient electron transfer, the covalent incorporation of perylene tetracarboxydiimide (PDI) into one block of a poly(2,7-carbazole) (PCz)-based diblock copolymer and 2,5-pyrrole based on push-pull type material are achieved respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conjugated polymers are macromolecules that possess alternating single and double bonds along the main chain. These polymers combine the optoelectronic properties of semiconductors with the mechanical properties and processing advantages of plastics. In this thesis we discuss the synthesis, characterization and application of polyphenylene-based materials in various electronic devices. Poly(2,7-carbazole)s have the potential to be useful as blue emitters, but also as donor materials in solar cells due to their better hole-accepting properties. However, it is associated with two major drawbacks (1) the emission maximum occurs at 421 nm where the human eye is not very sensitive and (2) the 3- and 6- positions of carbazole are susceptible to chemical or electrochemical degradation. To overcome these problems, the ladder-type nitrogen-bridged polymers are synthesized. The resulting series of polymers, nitrogen-bridged poly(ladder-type tetraphenylene), nitrogen-bridged poly(ladder-type pentaphenylene), nitrogen-bridged poly(ladder-type hexaphenylene) and its derivatives are discussed in the light of photophysical and electrochemical properties and tested in PLEDs, solar cell, and OFETs. A promising trend which has emerged in recent years is the use of well defined oligomers as model compounds for their corresponding polymers. However, the uses of these molecules are many times limited by their solubility and one has to use vapor deposition techniques which require high vacuum and temperature and cannot be used for large area applications. One solution to this problem is the synthesis of small molecules having enough alkyl chain on the backbone so that they can be solution or melt processed and has the ability to form thin films like polymers as well as retain the high ordered structure characteristics of small molecules. Therefore, in the present work soluble ladderized oligomers based on thiophene and carbazole with different end group were made and tested in OFET devices. Carbazole is an attractive raw material for the synthesis of dyes since it is cheap and readily available. Carbazoledioxazine, commercially known as violet 23 is a representative compound of dioxazine pigments. As part of our efforts into developing cheap alternatives to violet 23, the synthesis and characterization of a new series of dyes by Buchwald-type coupling of 3-aminocarbazole with various isomers of chloroanthraquinone are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functional materials have great importance due to their many important applications. The characterization of supramolecular architectures which are held together by non-covalent interactions is of most importance to understand their properties. Solid-state NMR methods have recently been proven to be able to unravel such structure-property relations with the help of fast magic-angle spinning and advanced pulse sequences. The aim of the current work is to understand the structure and dynamics of functional supramolecular materials which are potentially important for fuel-cell (proton conducting membrane materials) and solar-cell or plastic-electronic applications (photo-reactive aromatic materials). In particular, hydrogen-bonding networks, local proton mobility, molecular packing arrangements, and local dynamics will be studied by the use of advanced solid-state NMR methods. The first class of materials studied in this work is proton conducting polymers which also form hydrogen-bonding network. Different materials, which are prepared for high 1H conduction by different approaches are studied: PAA-P4VP, PVPA-ABPBI, Tz5Si, and Triazole-functional systems. The materials are examples of the following major groups; - Homopolymers with specific functional groups (Triazole functional polysiloxanes). - Acid-base polymer blends approach (PAA-P4VP, PVPA-ABPBI). - Acid-base copolymer approach (Triazole-PVPA). - Acid doped polymers (Triazole functional polymer doped with H3PO4). Perylenebisimide (PBI) derivatives, a second type of important functional supramolecular materials with potent applications in plastic electronics, were also investigated by means of solid-state NMR. The preparation of conducting nanoscopic fibers based on the self-assembling functional units is an appealing aim as they may be incorporated in molecular electronic devices. In this category, perylene derivatives have attracted great attention due to their high charge carrier mobility. A detailed knowledge about their supramolecular structure and molecular dynamics is crucial for the understanding of their electronic properties. The aim is to understand the structure, dynamics and packing arrangements which lead to high electron conductivity in PBI derivatives.