965 resultados para drainage water treatment
Resumo:
During the dyeing process in baths approximately 10 to 15% of the dyes used are lost and reach industrial effluents, thus polluting the environment. Studies showed that some classes of dyes, mainly azo dyes and their by-products, exert adverse effects on humans and local biota, since the wastewater treatment systems and water treatment plants were found to be ineffective in removing the color and reducing toxicity of some dyes. In the present study, the toxicity of the azo dyes disperse orange 1 (DO1), disperse red 1 (DR1), and disperse red 13 (DR13) was evaluated in HepG2 cells grown in monolayers or in three dimensional (3D) culture. Hepatotoxicity of the dyes was measured using 3-(4,5-dimethylthiazol-2yl)2,5-diphenyltetrazolium (MTT) and cell counting kit 8 (CCK-8) assays after 24, 48, and 72 h of incubation of cells with 3 different concentrations of the azo dyes. The dye DO1 only reduced the mitochondrial activity in HepG2 cells grown in a monolayer after 72 h incubation, while the dye DR1 showed this deleterious effect in both monolayer and 3D culture. In contrast, dye DR13 decreased the mitochondrial activity after 24, 48, and 72 h of exposure in both monolayer and 3D culture. With respect to dehydrogenase activity, only the dye DR13 diminished the activity of this enzyme after 72 h of exposure in both monolayer and 3D culture. Our results clearly demonstrated that exposure to the studied dyes induced cytotoxicity in HepG2 cells.
Resumo:
Mine tailings can be rich in sulphide minerals and may form acid mine drainage (AMD) through reaction with atmospheric oxygen and water. AMD contains elevated levels of metals and arsenic (As) that could be harmful to animals and plants. An oxygen-consuming layer of organic material and plants on top of water-covered tailings would probably reduce oxygen penetration into the tailings and thus reduce the formation of AMD. However, wetland plants have the ability to release oxygen through the roots and could thereby increase the solubility of metals and As. These elements are released into the drainage water, taken up and accumulated in the plant roots, or translocated to the shoots. The aim was to examine the effects of plant establishment on water-covered mine tailings by answering following questions: A) Is plant establishment on water-covered mine tailings possible? B) What are the metal and As uptake and translocation properties of these plants? C) How do plants affect metal and As release from mine tailings, and which are the mechanisms involved? Carex rostrata Stokes, Eriophorum angustifolium Honck., E. scheuchzeri Hoppe, Phragmites australis (Cav.) Steud., Salix phylicifolia L. and S. borealis Fr. were used as test plants. Influences of plants on the release of As, Cd, Cu, Pb, Zn and in some cases Fe in the drainage water, and plant element uptake were studied in greenhouse experiments and in the field. The results obtained demonstrate that plant establishment are possible on water-covered unweathered mine tailings, and a suitable amendment was found to be sewage sludge. On acidic, weathered tailings, a pH increasing substance such as ashes should be added to improve plant establishment. The metal and As concentrations of the plant tissue were found to be generally higher in roots than in shoots. The uptake was dependent on the metal and As concentrations of the tailings and the release of organic acids from plant roots may have influenced the uptake. The metal release from tailings into the drainage water caused by E. angustifolium was found to depend greatly on the age and chemical properties of the tailings. However, no effects of E. angustifolium on As release was found. Water from old sulphide-, metal- and As-rich tailings with low buffering capacity were positively affected by E. angustifolium by causing higher pH and lower metal concentrations. In tailings with relatively low sulphide, metal and As contents combined with a low buffering capacity, plants had the opposite impact, i.e. a reduction in pH and elevated metal levels of the drainage water. The total release of metal and As from the tailings, i.e. drainage water together with the contents in shoots and roots, was found to be similar for C. rostrata, E. angustifolium and P. australis, except for Fe and As, where the release was highest for P. australis. The differences in metal and As release from mine tailings were mainly found to be due to the release of O2 from the roots, which changes the redox potential. Release of organic acids from the roots slightly decreased the pH, although did not have any particular influence on the release of metal and As. In conclusion, as shown here, phytostabilisation may be a successful technique for remediation of mine tailings with high element and sulphide levels, and low buffering capacity.
Resumo:
Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.
Resumo:
Nanofiltration (NF) is a pressure-driven membrane process, intermediate between reverse osmosis and ultrafiltration. Commercially available polymeric membranes have been used in a wide range of applications, such as drinking, process industry and waste water treatment. For all the applications requiring high stability and harsh washing procedures inorganic membranes are preferred due to their high chemical inertia. Typically, γ – Al2O3 as well as TiO2 and ZrO2 selective layers are used; the latter show higher chemical stability in a wide range of pH and temperatures. In this work the experimental characterization of two different type of membrane has been performed in order to investigate permeation properties, separation performance and efficiency with aqueous solutions containing strong inorganic electrolytes. The influence of salt concentration and feed pH as well as the role of concentration polarization and electrolyte type on the membrane behavior are investigated. Experimentation was performed testing a multi–layer structured NF membrane in α-Al2O3, TiO2 and ZrO2, and a polymeric membrane, in polyamide supported on polysulfone, with binary aqueous solutions containing NaCl, Na2SO4 or CaCl2; the effect of salt composition and pH in the feed side was studied both on flux and salt rejection. All the NF experimental data available for the two membranes were used to evaluate the volumetric membrane charge (X) corresponding to each operative conditions investigated, through the Donnan Steric Pore Model and Dielectric Exclusion (DSPM&DE). The results obtained allow to understand which are the main phenomena at the basis of the different behaviors observed.
Resumo:
Programa de Doctorado: Ingeniería Ambiental y Desalinización
Resumo:
Polyamine polymers have attracted attention due to their ability to demonstrate pH dependent cationic nature and presence of highly reactive pendant amino groups. These amino groups make them suitable for a host of applications through cross-linking and derivatization. As a result the end use application of a polyamine is largely driven by the number of amino groups and the way they are attached to the polymer backbone. Thus, this piece of work describes the synthesis and investigation of properties of a novel aliphatic polyamine, poly(methylene amine); that carries maximum number of amino group on its backbone. The target polymer, poly(methylene amine); was synthesized via two major steps viz.1.synthesis of precursor polymers of poly(methylene amine) and 2. Hydrolysis of the precursor polymers to obtain poly(methylene amine). The precursor polymers poly (1,3-diacetylimidazole-2-one)(6) and poly(1,3-diformyldihydroimidazol-2-one)(7) were synthesized via radical polymerization of their respective monomers. The monomers were polymerized in bulk as well as in solution at different reaction conditions. The maximum molecular weights were achieved by polymerizing the monomers in bulk (Mn = 6.5 x 104 g/mol and Mw = 2.13 x 105 g/mol) of 6. The precursor polymers were hydrolyzed under strong reaction conditions in ethanol in presence of NaOH, LiCl at 170°C to yield poly(methylene amine). The process of hydrolysis was monitored by IR spectroscopy. The solution properties of poly(methylene amine) and its hydrochloride were investigated by viscosimetry and light scattering. The reduced viscosity of poly (methylene amine) hydrochloride as a function of polymer concentration demonstrated a behavior typical of cationic polyelectrolyte. With decrease in polymer concentration the reduced viscosity of poly(methylene amine) hydrochloride increased gradually. The dynamic light scattering studies also revealed behaviors of a polyelectrolyte. Poly(methylene amine) was reacted with electrophiles to yield novel materials. While the attachment of alkyl group onto the nitrogen would increase nucleophilicity, it would also impose steric hindrance. As a result the degree of substitution on poly(methylene amine) would be governed by both the factors. Therefore, few model reactions with electrophiles were performed on polvinylamine under similar reaction conditions in order to make a comparative evaluation. It was found that under similar reaction conditions the degree of substitution was higher in case of polyvinylamine in comparison with poly (methylene amine).This shows that the steric hindrance outweighs nucleophilicity while deciding degree of substitution of electrophiles on poly(methylene amine). The modification was further extended to its use as an initiator for ring opening polymerization of benzyloxy protected N-carboxyanhydride of z-Lysine. The resulting polymer had an interesting brush like architecture. The solid state morphology of this polymer was investigated by SAXS. The 2D-WAXS diffractograms revealed hexagonal morphology of peptide segments without formation of alpha helices.
Resumo:
In recent years the hot water treatment (HW) represents an effective and safe approach for managing postharvest decay. This study reported the effect of an HW (60°C for 60 s and 45°C for 10 min) on brown rot and blue mould respectively. Peaches was found more thermotolerant compared to apple fruit, otherwise Penicillium expansum was more resistant to heat with respect to Monilinia spp. In semi-commercial and commercial trials, the inhibition of brown rot in naturally infected peaches was higher than 78% after 6 days at 0°C and 3 days at 20°C. Moreover, in laboratory trials a 100% disease incidence reduction was obtained by treating artificially infected peaches at 6-12 h after inoculation revealing a curative effect of HW. The expression levels of some genes were evaluated by qRT-PCR. Specifically, the cell wall genes (β-GAL, PL, PG, PME) showed a general decrease of expression level whereas PAL, CHI, HSP70 and ROS-scavenging genes were induced in treated peaches compared to the control ones. Contrarily, HW applied on artificially infected fruit before the inoculum was found to increase brown rot susceptibility. This aspect might be due to an increase of fruit VOCs emission as revealed by PTR-ToF-MS analysis. In addition a microarray experiment was conducted to analyze molecular mechanisms underneath the apple response to heat. Our results showed a largest amount of induced Heat shock proteins (HSPs), Heat shock cognate proteins (HSCs), Heat shock transcription factors (HSTFs) genes found at 1 and 4 hours from the treatment. Those genes required for the thermotolerance process could be involved in induced resistance response. The hypothesis was confirmed by 30% of blue mold disease reduction in artificially inoculated apple after 1 and 4 hours from the treatment. In order to improve peaches quality and disease management during storage, an innovative tool was also used: Da-meter.
Resumo:
Groundwater constitutes approximately 30% of freshwater globally and serves as a source of drinking water in many regions. Groundwater sources are subject to contamination with human pathogens (viruses, bacteria and protozoa) from a variety of sources that can cause diarrhea and contribute to the devastating global burden of this disease. To attempt to describe the extent of this public health concern in developing countries, a systematic review of the evidence for groundwater microbially-contaminated at its source as risk factor for enteric illness under endemic (non-outbreak) conditions in these countries was conducted. Epidemiologic studies published in English language journals between January 2000 and January 2011, and meeting certain other criteria, were selected, resulting in eleven studies reviewed. Data were extracted on microbes detected (and their concentrations if reported) and on associations measured between microbial quality of, or consumption of, groundwater and enteric illness; other relevant findings are also reported. In groundwater samples, several studies found bacterial indicators of fecal contamination (total coliforms, fecal coliforms, fecal streptococci, enterococci and E. coli), all in a wide range of concentrations. Rotavirus and a number of enteropathogenic bacteria and parasites were found in stool samples from study subjects who had consumed groundwater, but no concentrations were reported. Consumption of groundwater was associated with increased risk of diarrhea, with odds ratios ranging from 1.9 to 6.1. However, limitations of the selected studies, especially potential confounding factors, limited the conclusions that could be drawn from them. These results support the contention that microbial contamination of groundwater reservoirs—including with human enteropathogens and from a variety of sources—is a reality in developing countries. While microbially-contaminated groundwaters pose risk for diarrhea, other factors are also important, including water treatment, water storage practices, consumption of other water sources, water quantity and access to it, sanitation and hygiene, housing conditions, and socio-economic status. Further understanding of the interrelationships between, and the relative contributions to disease risk of, the various sources of microbial contamination of groundwater can guide the allocation of resources to interventions with the greatest public health benefit. Several recommendations for future research, and for practitioners and policymakers, are presented.^
Resumo:
The chemical and biochemical processes associated with the filtration of rainwater through soils, a step in groundwater recharge, were investigated. Under simulated climatic conditions in the laboratory, undisturbed soil columns of partly loamy sands, sandy soils and loess were run as lysimeters. A series of extraction procedures was carried out to determine solid matter in unaltered rock materials and in soil horizons. Drainage water and moisture movement in the columns were analysed and traced respectively. The behaviour of soluble humic substance was investigated by percolation and suspension experiments. The development of seepage-water in the unsaturated zone is closely associated with the soil genetic processes. Determining autonomous chemical and physical parameters are mineral composition and grain size distribution in the original unconsolidated host rock and prevailing climatic conditions. They influence biological activity and transport of solids, dissolved matter and gases in the unsaturated zone. Humic substances, either as amorphous solid matter or as soluble humic acids play a part in diverse sorption, solution and precipitation processes.
Resumo:
We studied the response in development times of Calanus finmarchicus and Calanus helgolandicus to changes in temperature and food conditions. The ingestion response to temperature was determined in the laboratory, where the copepods C. finmarchicus and C. helgolandicus were fed the diatom Thalassiosira weissflogii (cultivated at 18°C-20°; 12 : 12 light :dark cycle; exponential growth). C. finmarchicus was obtained for experiments from the Gullmar fjord. C. finmarchicus was incubated at in situ temperature (5°C) until the experiments were performed. First-generation cultures were grown in the laboratory at 15°C from the eggs from the Sta. L4 females. During growth both C. finmarchicus and C. helgolandicus cultures were fed a mixture of the cryptophyte Rhodomonas salina, the diatom Thalassiosira weissflogii, and the dinoflagellate Prorocentrum minimum. Five 600-mL glass bottles containing 1400 cells mL**-1 or 5 mg chlorophyll a (Chl a) L**-1 of T. weissflogii (200 mg C) and 1-2 C. finmarchicus or C. helgolandicus copepodite stage 5 (CV) or females were incubated in darkness at series of temperatures between 1°C and 21 ± 0.5°C. Three bottles without copepods served as control. In the C. helgolandicus experiment, T. weissflogii cells were counted at the beginning and end of the experiment in the grazing bottles and controls using a Coulter CounterH (MultisizerTM 3, Beckman Coulter). In the C. finmarchicus experiment, phytoplankton reduction was determined by Chl a measurements. The reduction in phytoplankton during any of the experiments was generally below 20% and never more than 32%. Clearance rates were calculated following Harris et al. (2000).
Resumo:
Helianthus tuberosus L. presenta potencial para producir etanol, sustituto de la nafta, y que deberá incorporarse a la misma en un 5% a partir del 2010 en Argentina. Hay antecedentes que señalan que a partir de 50 toneladas de tubérculos pueden obtenerse 4500 l de etanol. En este trabajo se comparó el rendimiento de dos variedades de topinambur regado con agua residual urbana o cloacal (AC) y agua subterránea (AS). El ensayo se realizó en la planta de tratamiento de agua cloacal de Obras Sanitarias Mendoza en el Departamento Tunuyán (33°32’89’’ S y 69°00’80’’ O), Mendoza, Argentina. El potencial para producir bioetanol se estimó a partir de la cantidad de hidratos de carbono fermentables en los tubérculos. El rendimiento de tubérculos presentó diferencias entre los tratamientos de riego, siendo de 177750 kg/ha en AC y de 144000 kg/ha en AS. La estimación del potencial para producir etanol generó un valor de 15000 l de alcohol en las parcelas regadas con AC y 13000 l en las regadas con AS. Para obtener 1 l de alcohol a partir de los tubérculos serían necesarios alrededor de 11 kg, relacionado con un valor de sólidos solubles de 16% en los mismos.
Resumo:
El aceite de colza es comestible pero también puede utilizarse en la producción de biodiesel. Cuando el destino es el energético, el cultivo puede regarse con aguas residuales urbanas o cloacales. La mayor proporción del uso de éstas en el mundo ocurre en regiones áridas donde otras fuentes de agua son escasas, situación que se plantea en los oasis irrigados de Mendoza. En este trabajo se comparó el rendimiento de un cultivar invernal de colza regado con agua cloacal (AC) y agua subterránea (AS), y su potencial para producir biodiesel. La experiencia se llevó a cabo en una planta de tratamiento de agua cloacal de Obras Sanitarias en el departamento Tunuyán (33° 32’ 89’’ S; 69° 00’ 80’’ O; 859 m snm). El rendimiento de semilla de AC fue significativamente mayor que el de AS (7690 y 3886 kg/ha, respectivamente). La cantidad de biodiesel factible de producir por cada hectárea de cultivo asciende a 2800 kg en el tratamiento AC y a 1400 kg en AS. El uso de aguas residuales urbanas genera un nicho interesante para la producción de biocombustibles, utilizando un recurso hídrico con limitaciones para producir alimentos.
Resumo:
With each cellular generation, oxygenic photoautotrophs must accumulate abundant protein complexes that mediate light capture, photosynthetic electron transport and carbon fixation. In addition to this net synthesis, oxygenic photoautotrophs must counter the light-dependent photoinactivation of Photosystem II (PSII), using metabolically expensive proteolysis, disassembly, resynthesis and re-assembly of protein subunits. We used growth rates, elemental analyses and protein quantitations to estimate the nitrogen (N) metabolism costs to both accumulate the photosynthetic system and to maintain PSII function in the diatom Thalassiosira pseudonana, growing at two pCO2 levels across a range of light levels. The photosynthetic system contains c. 15-25% of total cellular N. Under low growth light, N (re)cycling through PSII repair is only c. 1% of the cellular N assimilation rate. As growth light increases to inhibitory levels, N metabolite cycling through PSII repair increases to c. 14% of the cellular N assimilation rate. Cells growing under the assumed future 750 ppmv pCO2 show higher growth rates under optimal light, coinciding with a lowered N metabolic cost to maintain photosynthesis, but then suffer greater photoinhibition of growth under excess light, coincident with rising costs to maintain photosynthesis. We predict this quantitative trait response to light will vary across taxa.
Resumo:
Ocean acidification (OA) poses a severe threat to tropical coral reefs, yet much of what is know about these effects comes from individual corals and algae incubated in isolation under high pCO2. Studies of similar effects on coral reef communities are scarce. To investigate the response of coral reef communities to OA, we used large outdoor flumes in which communities composed of calcified algae, corals, and sediment were combined to match the percentage cover of benthic communities in the shallow back reef of Moorea, French Polynesia. Reef communities in the flumes were exposed to ambient (400 ?atm) and high pCO2 (1300 ?atm) for 8 weeks, and calcification rates measured for the constructed communities including the sediments. Community calcification was reduced by 59% under high pCO2, with sediment dissolution explaining ~ 50% of this decrease; net calcification of corals and calcified algae remained positive but was reduced by 29% under elevated pCO2. These results show that, despite the capacity of coral reef calcifiers to maintain positive net accretion of calcium carbonate under OA conditions, reef communities might transition to net dissolution as pCO2 increases, particularly at night, due to enhanced sediment dissolution.