996 resultados para double cortex


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract In this paper we study numerically a new type of central configurations of the 3n-body problem with equal masses which consist of three n-gons contained in three planes z = 0 and z = ±β = 0. The n-gon on z = 0 is scaled by a factor α and it is rotated by an angle of π/n with respect to the ones on z = ±β. In this kind of configurations, the masses on the planes z = 0 and z = β are at the vertices of an antiprism with bases of different size. The same occurs with the masses on z = 0 and z = −β. We call this kind of central configurations double-antiprism central configurations. We will show the existence of central configurations of this type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated how synaptic plasticity is related to the neurodegeneration process in the human dorsolateral prefrontal cortex. Pre- and postsynaptic proteins of Brodmann's area 9 from patients with Alzheimer's disease (AD) and age-matched controls were quantified by immunohistochemical methods and Western blots. The main finding was a significant increase in the expression of postsynaptic density protein PSD-95 in AD brains, revealed on both sections and immunoblots, while the expression of spinophilin, associated to spines, remained quantitatively unchanged despite qualitative changes with age and disease. Presynaptic protein alpha-synuclein indicated an increased immunohistochemical level, while synaptophysin remained unchanged. MAP2, a somatodendritic microtubule protein, as well as AD markers such as amyloid-beta protein and phosphorylated protein tau showed an increased expression on immunosections in AD. Altogether these changes suggest neuritic and synaptic reorganization in the process of AD. In particular, the significant increase in PSD-95 expression suggests a change in NMDA receptors trafficking and may represent a novel marker of functional significance for the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visual areas 17 and 18 were studied with morphometric methods for numbers of neurons, glia, senile plaques (SP), and neurofibrillary tangles (NFT) in 13 cases of Alzheimer's disease (AD) as compared to 11 controls. In AD cases, the mean neuronal density was significantly decreased by about 30% in both areas 17 and 18, while the glial density was increased significantly only in area 17. The volume of area 17 was unchanged in AD cases but its total number of neurons was decreased by 33% and its total number of glia increased by 45% compared to controls. In AD the number of SP was similar in areas 17 and 18, while that of NFT was significantly higher in area 18. The number of neurons with NFT was only 2% in area 17 and about 10% in area 18. The discrepancy between the loss of neurons and the amount of NFT suggests that neuronal loss can occur without passing through NFT degeneration. The deposition of SP was correlated with glial proliferation, but not with neuronal loss or neurofibrillary degeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective This study assessed the efficacy and safety of canakinumab, a fully human anti-interleukin 1 beta monoclonal antibody, for prophylaxis against acute gouty arthritis flares in patients initiating urate-lowering treatment.Methods In this double-blind, double-dummy, dose-ranging study, 432 patients with gouty arthritis initiating allopurinol treatment were randomised 1:1:1:1:1:1:2 to receive: a single dose of canakinumab, 25, 50, 100, 200, or 300 mg subcutaneously; 4 x 4-weekly doses of canakinumab (50 + 50 + 25 + 25 mg subcutaneously); or daily colchicine 0.5 mg orally for 16 weeks. Patients recorded details of flares in diaries. The study aimed to determine the canakinumab dose having equivalent efficacy to colchicine 0.5 mg at 16 weeks.Results A dose-response for canakinumab was not apparent with any of the four predefined dose-response models. The estimated canakinumab dose with equivalent efficacy to colchicine was below the range of doses tested. At 16 weeks, there was a 62% to 72% reduction in the mean number of flares per patient for canakinumab doses >= 50 mg versus colchicine based on a negative binomial model (rate ratio: 0.28-0.38, p <= 0.0083), and the percentage of patients experiencing >= 1 flare was significantly lower for all canakinumab doses (15% to 27%) versus colchicine (44%, p<0.05). There was a 64% to 72% reduction in the risk of experiencing >= 1 flare for canakinumab doses >= 50 mg versus colchicine at 16 weeks (hazard ratio (HR): 0.28-0.36, p <= 0.05). The incidence of adverse events was similar across treatment groups.Conclusions Single canakinumab doses >= 50 mg or four 4-weekly doses provided superior prophylaxis against flares compared with daily colchicine 0.5 mg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A role for gut hormone in bone physiology has been suspected. We evidenced alterations of microstructural morphology (trabecular and cortical) and bone strength (both at the whole-bone - and tissue-level) in double incretin receptor knock-out (DIRKO) mice as compared to wild-type littermates. These results support a role for gut hormones in bone physiology. INTRODUCTION: The two incretins, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), have been shown to control bone remodeling and strength. However, lessons from single incretin receptor knock-out mice highlighted a compensatory mechanism induced by elevated sensitivity to the other gut hormone. As such, it is unclear whether the bone alterations observed in GIP or GLP-1 receptor deficient animals resulted from the lack of a functional gut hormone receptor, or by higher sensitivity for the other gut hormone. The aims of the present study were to investigate the bone microstructural morphology, as well as bone tissue properties, in double incretin receptor knock-out (DIRKO) mice. METHODS: Twenty-six-week-old DIRKO mice were age- and sex-matched with wild-type (WT) littermates. Bone microstructural morphology was assessed at the femur by microCT and quantitative X-ray imaging, while tissue properties were investigated by quantitative backscattered electron imaging and Fourier-transformed infrared microscopy. Bone mechanical response was assessed at the whole-bone- and tissue-level by 3-point bending and nanoindentation, respectively. RESULTS: As compared to WT animals, DIRKO mice presented significant augmentations in trabecular bone mass and trabecular number whereas bone outer diameter, cortical thickness, and cortical area were reduced. At the whole-bone-level, yield stress, ultimate stress, and post-yield work to fracture were significantly reduced in DIRKO animals. At the tissue-level, only collagen maturity was reduced by 9 % in DIRKO mice leading to reductions in maximum load, hardness, and dissipated energy. CONCLUSIONS: This study demonstrated the critical role of gut hormones in controlling bone microstructural morphology and tissue properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cross-talk between NK cells and dendritic cells (DCs) is critical for the potent therapeutic response to dsRNA, but the receptors involved remained controversial. We show in this paper that two dsRNAs, polyadenylic-polyuridylic acid and polyinosinic-polycytidylic acid [poly(I:C)], similarly engaged human TLR3, whereas only poly(I:C) triggered human RIG-I and MDA5. Both dsRNA enhanced NK cell activation within PBMCs but only poly(I:C) induced IFN-gamma. Although myeloid DCs (mDCs) were required for NK cell activation, induction of cytolytic potential and IFN-gamma production did not require contact with mDCs but was dependent on type I IFN and IL-12, respectively. Poly(I:C) but not polyadenylic-polyuridylic acid synergized with mDC-derived IL-12 for IFN-gamma production by acting directly on NK cells. Finally, the requirement of both TLR3 and Rig-like receptor (RLR) on mDCs and RLRs but not TLR3 on NK cells for IFN-gamma production was demonstrated using TLR3- and Cardif-deficient mice and human RIG-I-specific activator. Thus, we report the requirement of cotriggering TLR3 and RLR on mDCs and RLRs on NK cells for a pathogen product to induce potent innate cell activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AVANT PROPOS L'abus des conventions de double imposition (treaty shopping) est une des problématiques les plus riches de la fiscalité internationale contemporaine. L'utilisation d'une telle convention (ci-après : CDI) par des personnes ne résidant effectivement dans aucun des Etats contractants à la convention constitue pour une majorité de la doctrine internationale un abus de droit. La problématique de l'abus des CDI a été identifiée de longue date en Suisse. Elle a suivi une évolution partiellement différente aux Etats-Unis. Les deux approches se sont rencontrées une première fois lors de la conclusion de la CDI CH-US de 1951 (art. XI). Longtemps évoquée, la révision de cette convention a été finalisée en 1996. Cette deuxième rencontre a fait entrer dans l'ordre juridique suisse une disposition d'un type complètement nouveau, qui aura des répercussions jusque dans la pratique anti-abus au plan interne en Suisse. La présente étude s'attachera à examiner l'évolution comparée de la lutte contre l'abus des CDI en Suisse tout d'abord (première partie), et aux Etats-Unis ensuite (IIe partie), ainsi que les relations entre les normes internes anti-abus et celles découlant d'une convention dans chacun des deux Etats. La clause spécifique de limitation des avantages de la Convention actuelle (art. 22 CDI-US) sera analysée dans la IIIe partie. La dernière partie (IVe partie) sera consacrée à une comparaison entre cette disposition et les mesures anti-abus contenues dans le Modèle de convention de l'OCDE afin de déterminer si cette clause constitue réellement l'instrument optimal pour lutter contre l'utilisation indue des conventions de double imposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the association of the T309G MDM2 gene polymorphism with renal cell carcinoma (RCC) risk, pathology, and cancer-specific survival (CSS). T309G MDM2 was genotyped in 449 Caucasians, including 240 with RCC and 209 cancer-free controls. The T309G MDM2 genotype was TT in 174 (38.8%), GT in 214 (47.7%), and GG in 61 (13.6%) subjects, without any significant differences between cases and controls on both univariable (p=0.58) and multivariable logistic regression (each p>0.25). Furthermore, T309G MDM2 was not linked with T stage (p=0.75), N stage (p=0.37), M stage (p=0.94), grade (p=0.21), and subtype (p=0.55). There was, however, a statistically significant association of T309G MDM2 with CSS (p=0.022): patients with TT had significantly worse survival than GG/GT (p=0.009), while those with GT and GG had similar outcomes (p=0.92). The 5-year survival rate for patients with TT, GT, and GG was 69.5%, 84.5%, and 89.7%, respectively. On the multivariable analysis, T309G was identified as an independent prognostic factor. The T309G MDM2 polymorphism is an independent prognostic factor for patients with RCC, with the TT genotype being associated with worse prognosis. In this study, there were no significant associations with RCC risk and pathology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Glutathione (GSH) is a major redox regulator and antioxidant and is decreased in cerebrospinal fluid and prefrontal cortex of schizophrenia patients [Do et al. (2000) Eur J Neurosci 12:3721]. The genes of the key GSH-synthesizing enzyme, glutamate- cysteine ligase catalytic (GCLC) and modifier (GCLM) subunits, are associated with schizophrenia, suggesting that the deficit in GSH synthesis is of genetic origin [Gysin et al. (2007) PNAS 104:16621]. GCLM knock-out (KO) mice, which display an 80% decrease in brain GSH levels, have abnormal brain morphology and function [Do et al. (2009) Curr Opin Neurobiol 19:220]. Developmental redox deregulation by impaired GSH synthesis and environmental risk factors generating oxidative stress may have a central role in schizophrenia. Here, we used GCLM KO mice to investigate the impact of a genetically dysregulated redox system on the neurochemical profile of the developing brain. Methods: The neurochemical profile of the anterior and posterior cortical areas of male and female GCLM KO and wild-type mice was determined by in vivo 1H NMR spectroscopy on postnatal days 10, 20, 30, 60 and 90, under 1 to 1.5% isoflurane anaesthesia. Localised 1H NMR spectroscopy was performed on a 14.1 T, 26 cm VNMRS spectrometer (Varian, Magnex) using a home-built 8 mm diameter quadrature surface coil (used both for RF excitation and signal reception). Spectra were acquired using SPECIAL with TE of 2.8 ms and TR of 4 s from VOIs placed in anterior or posterior regions of the cortex [Mlynárik et al. (2006) MRM 56:965]. LCModel analysis allowed in vivo quantification of a neurochemical profile composed of 18 metabolites. Results: GCLM KO mice displayed nearly undetectable GSH levels as compared to WT mice, demonstrating their drastic redox deregulation. Depletion of GSH triggered alteration of metabolites related to its synthesis, namely increase of glycine and glutamate levels during development (P20 and P30). Concentrations of glutamine and aspartate that are produced from glutamate were also increased in GCLM KO animals relative to WT. In addition, GCLM KO mice also showed higher levels of N-acetylaspartate that originates from the acetylation of aspartate. These metabolites are particularly implicated in neurotransmission processes and in mitochondrial oxidative metabolism. Their increase may indicate impaired mitochondrial metabolism with concomitant accumulation of lactate in the adult mice (P60 and P90). In addition, the GSH depletion triggers reduction of GABA concentration in anterior cortex of the P60 mice, which is in accordance with known impairment of GABAergic interneurons in that area. Changes were generally more pronounced in males than in females at P60, which is consistent with earlier disease onset in male patients. Discussion: In conclusion, the observed metabolic alterations in the cortex of a mouse model of redox deregulation suggest impaired mitochondrial metabolism and altered neurotransmission. The results also highlight the age between P20 and P30 as a sensitive period during the development for these alterations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microtubule-associated protein MAP2 was studied in the developing cat visual cortex and corpus callosum. Biochemically, no MAP2a was detectable in either structure during the first postnatal month; adult cortex revealed small amounts of MAP2a. MAP2b was abundant in cortical tissue during the first postnatal month and decreased in concentration towards adulthood; it was barely detectable in corpus callosum at all ages. MAP2c was present in cortex and corpus callosum at birth; in cortex it consisted of three proteins of similar molecular weights between 65 and 70 kD. The two larger, phosphorylated forms disappeared after postnatal day 28, the smaller form after day 39. In corpus callosum, MAP2c changed from a phosphorylated to an unphosphorylated variant during the first postnatal month and then disappeared. Immunocytochemical experiments revealed MAP2 in cell bodies and dendrites of neurons in all cortical layers, from birth onwards. In corpus callosum, in the first month after birth, a little MAP2, possibly MAP2c, was detectable in axons. The present data indicate that MAP2 isoforms differ in their cellular distribution, temporal appearance and structural association, and that their composition undergoes profound changes during the period of axonal stabilization and dendritic maturation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Ischemic stroke is the leading cause of mortality worldwide and a major contributor to neurological disability and dementia. Terutroban is a specific TP receptor antagonist with antithrombotic, antivasoconstrictive, and antiatherosclerotic properties, which may be of interest for the secondary prevention of ischemic stroke. This article describes the rationale and design of the Prevention of cerebrovascular and cardiovascular Events of ischemic origin with teRutroban in patients with a history oF ischemic strOke or tRansient ischeMic Attack (PERFORM) Study, which aims to demonstrate the superiority of the efficacy of terutroban versus aspirin in secondary prevention of cerebrovascular and cardiovascular events. METHODS AND RESULTS: The PERFORM Study is a multicenter, randomized, double-blind, parallel-group study being carried out in 802 centers in 46 countries. The study population includes patients aged > or =55 years, having suffered an ischemic stroke (< or =3 months) or a transient ischemic attack (< or =8 days). Participants are randomly allocated to terutroban (30 mg/day) or aspirin (100 mg/day). The primary efficacy endpoint is a composite of ischemic stroke (fatal or nonfatal), myocardial infarction (fatal or nonfatal), or other vascular death (excluding hemorrhagic death of any origin). Safety is being evaluated by assessing hemorrhagic events. Follow-up is expected to last for 2-4 years. Assuming a relative risk reduction of 13%, the expected number of primary events is 2,340. To obtain statistical power of 90%, this requires inclusion of at least 18,000 patients in this event-driven trial. The first patient was randomized in February 2006. CONCLUSIONS: The PERFORM Study will explore the benefits and safety of terutroban in secondary cardiovascular prevention after a cerebral ischemic event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A transitory projection from primary and secondary auditory areas to the contralateral and ipsilateral areas 17 and 18 exists in newborn kittens. Distinct neuronal populations project to ipsilateral areas 17-18, contralateral areas 17-18 and contralateral auditory cortex; they are at different depth in layers II, III, and IV. By postnatal day 38 the auditory to visual projections have been lost, apparently by elimination of axons rather than by neuronal death. While it was previously reported that the elimination of transitory axons is responsible for focusing the origin of callosal connections to restricted portions of sensory areas it now appears that similar events play a more general role in the organization of cortico-cortical networks. Indeed, the elimination of juvenile projections is largely responsible for determining which areas will be connected in the adult.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Citalopram, a new bicyclic antidepressant, is the most selective serotonin reuptake inhibitor. In a number of double-blind controlled studies, citalopram was compared to placebo and to known tricyclic antidepressants. These studies have shown their efficacy and good safety. The inefficacy of a psychotropic treatment in at least 20% of depressives has led a number of authors to propose original drug combinations and associations, like antidepressant/lithium (Li), antidepressant/sleep deprivation (agrypnia), antidepressant/ECT, or antidepressant/LT3. The aim of this investigation is to evaluate the clinical effectiveness and safety of a combined citalopram/lithium treatment in therapy-resistant patients, taking account of serotonergic functions, as tested by the fenfluramine/prolactin test, and of drug pharmacokinetics and pharmacogenetics of metabolism. DESIGN OF THE STUDY: A washout period of 3 days before initiating the treatment is included. After an open treatment phase of 28 days (D) with citalopram (20 mg D1-D3; 40 mg D4-D14; 40 or 60 mg D15-D28; concomitant medication allowed: chloral, chlorazepate), the nonresponding patients [less than 50% improvement in the total score on the 21 item-Hamilton Depression Rating Scale (HDRS)] are selected and treated with or without Li (randomized in double-blind conditions: citalopram/Li or citalopram/placebo) during the treatment (D29-D35). Thereafter, all patients included in the double-blind phase subsequently receive an open treatment with citalopram/Li for 7 days (D36-D42). The hypothesis of a relationship between serotoninergic functions in patients using the fenfluramine/prolactin test (D1) and the clinical response to citalopram (and Li) is assessed. Moreover, it is evaluated whether the pharmacogenetic status of the patients, as determined by the mephenytoin/dextromethorphan test (D0-D28), is related to the metabolism of fenfluramine and citalopram, and also to the clinical response. CLINICAL ASSESSMENT: Patients with a diagnosis of major depressive disorders according to DSM III are submitted to a clinical assessment of D1, D7, D14, D28, D35, D42: HDRS, CGI (clinical global impression), VAS (visual analog scales for self-rating of depression), HDRS (Hamilton depression rating scale, 21 items), UKU (side effects scale), and to clinical laboratory examens, as well as ECG, control of weight, pulse, blood pressure at D1, D28, D35. Fenfluramine/prolactin test: A butterfly needle is inserted in a forearm vein at 7 h 45 and is kept patent with liquemine. Samples for plasma prolactin, and d- and l-fenfluramine determinations are drawn at 8 h 15 (base line). Patients are given 60 mg fenfluramine (as a racemate) at 8 h 30. Kinetic points are determined at 9 h 30, 10 h 30, 11 h 30, 12 h 30, 13 h 30. Plasma levels of d- and l-fenfluramine are determined by gas chromatography and prolactin by IRNA. Mephenytoin/dextromethorphan test: Patients empty their bladders before the test; they are then given 25 mg dextropethorphan and 100 mg mephenytoin (as a racemate) at 8 h 00. They collect all urines during the following 8 hours. The metabolic ratio is determined by gas chromatography (metabolic ratio dextromethorphan/dextrorphan greater than 0.3 = PM (poor metabolizer); mephenytoin/4-OH-mephenytoin greater than 5.6, or mephenytoin S/R greater than 0.8 = PM). Citalopram plasma levels: Plasma levels of citalopram, desmethylcitalopram and didesmethylcitalopram are determined by gas chromatography--mass spectrometry. RESULTS OF THE PILOT STUDY. The investigation has been preceded by a pilot study including 14 patients, using the abovementioned protocol, except that all nonresponders were medicated with citalopram/Li on D28 to D42. The mean total score (n = 14) on the 21 item Hamilton scale was significantly reduced after the treatment, ie from 26.93 +/- 5.80 on D1 to 8.57 +/- 6.90 on D35 (p less than 0.001). A similar patCitalopram, a new bicyclic antidepressant, is the most selective serotonin reu

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report an experiment where participants observed an attack on their virtual body as experienced in an immersive virtual reality (IVR) system. Participants sat by a table with their right hand resting upon it. In IVR, they saw a virtual table that was registered with the real one, and they had a virtual body that substituted their real body seen from a first person perspective. The virtual right hand was collocated with their real right hand. Event-related brain potentials were recorded in two conditions, one where the participant"s virtual hand was attacked with a knife and a control condition where the knife only struck the virtual table. Significantly greater P450 potentials were obtained in the attack condition confirming our expectations that participants had a strong illusion of the virtual hand being their own, which was also strongly supported by questionnaire responses. Higher levels of subjective virtual hand ownership correlated with larger P450 amplitudes. Mu-rhythm event-related desynchronization in the motor cortex and readiness potential (C3C4) negativity were clearly observed when the virtual hand was threatened as would be expected, if the real hand was threatened and the participant tried to avoid harm. Our results support the idea that event-related potentials may provide a promising non-subjective measure of virtual embodiment. They also support previous experiments on pain observation and are placed into context of similar experiments and studies of body perception and body ownership within cognitive neuroscience.