928 resultados para dinâmicas sub-regionais
Resumo:
Epitaxial (001)-oriented 0.7Pb(Mg0.33Nb0.67)O3-0.3PbTiO3 (PMN-PT) thin films were deposited by pulsed laser deposition on vicinal SrTiO3 (001) substrates using La0.7Sr0.3MnO3 as bottom electrode. Detailed microstructural investigations of these films were carried out using X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM). Polarization-field hysteresis curves were measured at room temperature. Spontaneous polarization P s , remnant polarization P r and coercive voltage V c were found to be 25 μC/cm2, 15 μC/cm2 and 0.81 V, respectively. Field dependent dielectric constant measurements exhibited butterfly shaped curves, indicating the true ferroelectric nature of these films at room temperature. The dielectric constant and the dielectric loss at 100 kHz were found to be 238 and 0.14, respectively. The local piezoelectric properties of PMN-PT films were investigated by piezoelectric force microscopy and were found to exhibit a local piezoelectric coefficient of 7.8 pm/V.
Resumo:
N,O-ligated Pd(II) complexes show considerable promise for the oxidation of challenging secondary aliphatic alcohols. The crystal structures of the highly active complexes containing the 8-hydroxyquinoline-2-carboxylic acid (HCA) and 8-hydroxyquinoline-2-sulfonic acid (HSA) ligands have been obtained. The (HSA)Pd(OAc)2 system can effectively oxidise a range of secondary alcohols, including unactivated alcohols, within 4–6 h using loadings of 0.5 mol%, while lower loadings (0.2 mol%) can be employed with extended reaction times. The influence of reaction conditions on catalyst degradation was also examined in these studies.
Resumo:
Large range well ordered epitaxial ferrimagnetic nominally Fe3O4 structures were fabricated by pulsed-laser deposition and embedded in ferroelectric PbZrxTi1-xO3 (x = 0.2, 0.52) epitaxial films. Magnetite dots were investigated by magnetic force microscopy and exhibited magnetic domain contrast at room temperature (RT). Embedding ferroelectric PbZrxTi1-xO3 layers exhibit remnant polarization values close to the values of single epitaxial layers. Transmission electron microscopy demonstrated the epitaxial growth of the composites and the formation of the ferrimagnetic and ferroelectric phases. Physical and structural properties of these composites recommend them for investigations of stress mediated magneto-electric coupling at room temperature. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3692583]
Resumo:
The present study examined the effects of administering selective 5-HT antagonists and agonists to rats tested in the elevated zero-maze (EZM) model of anxiety. The EZM paradigm has advantages over the elevated plus-maze (EPM) paradigm with respect to measuring anxiety, yet has been utilized less frequently. Three experiments were conducted each with a diazepam control (0.25, 0.5 and 0.75 mg/kg). In the first experiment, we administered the 5-HT2C antagonist RS 102221 (0.5, 1.0, and 2.0 mg/kg) and 5-HT2C agonist MK-212 (0.25, 0.5 and 0.75 mg/kg); in the second experiment, we administered the 5-HT3 antagonist Y-25130 (0.1, 1.0 and 3.0 mg/kg) and 5-HT3 agonist SR 57227A (0.1, 1.0 and 3.0 mg/kg), and in the third experiment, we administered the 5-HT4 antagonist RS 39604 (0.01, 0.1, 1.0 mg/kg) and 5-HT4 agonist RS 67333 (0.01, 0.1 and 0.5 mg/kg). The administration of 5-HT2/3/4 subtype antagonists all generated behavioral profiles indicative of anxiolytic-like effects in the EZM, which was apparent from examination of both traditional and ethological measures. While little effect was observed from 5-HT2 and 5-HT3 agonists, the 5-HT4 agonist RS 67333 was found to produce a paradoxical anxiolytic-like effect similar to that produced by the 5-HT4 antagonist RS 39604. We conclude by discussing the implications of these findings.
Resumo:
The envelopes of AGB stars are irradiated externally by ultraviolet photons; hence, the chemistry is sensitive to the photodissociation of N$_2$ and CO, which are major reservoirs of nitrogen and carbon, respectively. The photodissociation of N$_2$ has recently been quantified by laboratory and theoretical studies. Improvements have also been made for CO photodissociation. For the first time, we use accurate N$_2$ and CO photodissociation rates and shielding functions in a model of the circumstellar envelope of the carbon-rich AGB star, IRC +10216. We use a state-of-the-art chemical model of an AGB envelope, the latest CO and N$_2$ photodissociation data, and a new method for implementing molecular shielding functions in full spherical geometry with isotropic incident radiation. We compare computed column densities and radial distributions of molecules with observations. The transition of N$_2$ $\to$ N (also, CO $\to$ C $\to$ C$^+$) is shifted towards the outer envelope relative to previous models. This leads to different column densities and radial distributions of N-bearing species, especially those species whose formation/destruction processes largely depend on the availability of atomic or molecular nitrogen, for example, C$_n$N ($n$=1, 3, 5), C$_n$N$^-$ ($n$=1, 3, 5), HC$_n$N ($n$=1, 3, 5, 7, 9), H$_2$CN and CH$_2$CN. The chemistry of many species is directly or indirectly affected by the photodissociation of N$_2$ and CO, especially in the outer shell of AGB stars where photodissociation is important. Thus, it is important to include N$_2$ and CO shielding in astrochemical models of AGB envelopes and other irradiated environments. In general, while differences remain between our model of IRC +10216 and the observed molecular column densities, better agreement is found between the calculated and observed radii of peak abundance.
Resumo:
The abrasion damage on retrieved CoCrMo based hip joints is reported to be influenced by the entrainment of micron and sub-micron sized debris/hard particles. This paper represents the first attempt to look into the effects of relatively soft abrasives with micron and sub-micron dimensions on the abrasion mechanisms and the abrasion-corrosion performance of the cast CoCrMo in simulated hip joint environments. A modified micro-abrasion tester incorporating a liquid tank and a three-electrode electrochemical cell was used. Al O (300 nm and 1 μm) and sub-micron sized BaSO abrasives were chosen as being comparable in the size and hardness to the wear particles found in vivo. Results show that the specific wear rates of cast CoCrMo are dependent on the abrasive particle size, hardness and volume concentration. Larger particle size, higher hardness and greater abrasive volume fractions gave greater wear rates. The wear-induced corrosion current generally increases with increasing wear rates, and the presence of proteins seems to suppress the wear-induced corrosion current especially when abrasive volume fractions were high. This study shows that the nature of abrasives and the test solutions are both important in determining the wear mechanisms and the abrasion-corrosion response of cast CoCrMo. These findings provide new and important insights into the in vivo wear mechanisms of CoCrMo. © 2009 Elsevier B.V. All rights reserved.
Resumo:
A new pathway to (+)-inthomycin C is reported that exploits an O-directed free radical hydrostannation reaction on (−)-12 and a Stille cross-coupling as key steps. Significantly, the latter process was effected on 19 where a gauche-pentane repulsive interaction could interfere. Our stereochemical studies on the alkynol (−)-12 and the enyne (+)-7 confirm that Ryu and Hatakeyama’s (3S)-stereochemical revision of (+)-inthomycin C is invalid and that Zeeck and Taylor’s original (3R)-stereostructure for (+)-inthomycin C is correct.
Resumo:
Abstract Image
Herein a new double O-directed free radical hydrostannation reaction is reported on the structurally complex dialkyldiyne 11. Through our use of a conformation-restraining acetal to help prevent stereocenter-compromising 1,5-H-atom abstraction reactions by vinyl radical intermediates, the two vinylstannanes of 10 were concurrently constructed with high stereocontrol using Ph3SnH/Et3B/O2. Distannane 10 was thereafter elaborated into the bis-vinyl iodide 9 via O-silylation and double I–Sn exchange; double Stille coupling of 9, O-desilylation, and oxidation thereafter furnished 8.
Resumo:
A technique for optimizing the efficiency of the sub-map method for large-scale simultaneous localization and mapping (SLAM) is proposed. It optimizes the benefits of the sub-map technique to improve the accuracy and consistency of an extended Kalman filter (EKF)-based SLAM. Error models were developed and engaged to investigate some of the outstanding issues in employing the sub-map technique in SLAM. Such issues include the size (distance) of an optimal sub-map, the acceptable error effect caused by the process noise covariance on the predictions and estimations made within a sub-map, when to terminate an existing sub-map and start a new one and the magnitude of the process noise covariance that could produce such an effect. Numerical results obtained from the study and an error-correcting process were engaged to optimize the accuracy and convergence of the Invariant Information Local Sub-map Filter previously proposed. Applying this technique to the EKF-based SLAM algorithm (a) reduces the computational burden of maintaining the global map estimates and (b) simplifies transformation complexities and data association ambiguities usually experienced in fusing sub-maps together. A Monte Carlo analysis of the system is presented as a means of demonstrating the consistency and efficacy of the proposed technique.
Resumo:
Robust, bilayer heterojunction photodiodes of TiO2-WO3 were prepared successfully by a simple, low-cost powder pressing technique followed by heat-treatment. Exclusive photoirradiation of the TiO2 side of the photodiode resulted in a rapid colour change (dark blue) on the WO3 surface as a result of reduction of W6+ to W5+ (confirmed by X-ray photoelectron spectroscopy). This colour was long lived and shown to be stable in a dry environment in air for several hours. A similar photoirradiation experiment in the presence of a mask showed that charge transfer across the heterojunction occurred approximately normal to the TiO2 surface, with little smearing out of the mask image. As a result of the highly efficient vectorial charge separation, the photodiodes showed a tremendous increase in photocatalytic activity for the degradation of stearic acid, compared to wafers of the respective individual materials when tested separately.
Resumo:
This article examines resource nationalism in sub-Saharan Africa's energy and minerals markets. It does so by exploring economic and political developments in three cases: Nigeria as an example of a petro-state established by means of expropriation in the wake of decolonisation; South Africa, a mature mining industry shaped by its settler colonial history; and Mozambique, a new and therefore highly-dependent entrant into the league of significant natural gas producers. Extractive industries have played a controversial role in sub-Saharan Africa due in particular to the prevalence of the resource curse. Nevertheless, energy exports will continue to play an important role in fuelling economic growth and, potentially, also development as new deposits of natural gas and oil are discovered across the region. Resource nationalism has, moreover, increasingly constrained operations of the traditionally dominant Western energy companies, in particular as competition from state-owned energy companies in sub-Saharan Africa and from emerging powers such as China is increasing.
Resumo:
The reaction mechanism of CO and Fe2O3 in a chemical-looping combustion (CLC) was studied based on density functional theory (DFT) at B3LYP level in this paper. The structures of all reactants, intermediate, transition structures and products of this reaction had been optimized and characterized. The reaction path was validated by means of the intrinsic reaction coordinate (IRC) approach. The result showed that the reaction was divided into two steps, the adsorbed CO molecule on Fe 2O3 surface formed a medium state with one broken Fe-O bond in step1, and in step2, O atom broken here oxidized a subsequent CO molecule in the fuel reactor. Thus, Fe2O3 molecule transport O from air to oxide CO continually in the CLC process. The activation energy and rate coefficients of the two steps were also obtained.
Resumo:
A tridimensional model of α-Fe2O3 and models of (0001) and (1102) surfaces on it were built. Then the structural optimization of the (0001) surface was presented which explored the influence of the system scale and the terminal surface configuration. Four different models including two different system scale structures (MODEL□ and MODEL□) and two different terminal structures (MODEL□ and MODEL□) were analyzed in this paper. It was concluded that the boundary effect was more important in a smaller system in the structure optimization. And the Fe-terminated was more stable than the O-terminated structure which was agreed with the experiences, this structural model can be used in further work including the monatomic adsorption/desorption and the chemical reactions on this surface.