989 resultados para ddc:320
Resumo:
The influence of atomic densities on the propagation property for ultrashort pulses in a two-level atom (TLA) medium is investigated. With higher atomic densities, the self-induced transparency (SIT) cannot be recovered even for 2π ultrashort pulses. New features such as pulse splitting, red-shift and blue-shift of the corresponding spectra arise, and the component of central frequency gradually disappears.
Resumo:
Using second-order autocorrelation conception, a novel method and instrument for accurately measuring interval between two linearly polarized ultrashort pulses with real time were presented. The experiment demonstrated that the measuring method and instrument were simple and accurate (the measurement error <5 fs). During measuring, there was no moving element resulting in dynamic measurement error.
Resumo:
The ablation in zinc selenide (ZnSe) crystal is studied by using 150-fs, 800-nm laser system. The images of the ablation pit measured by scanning electronic microscope (SEM) show no thermal stress and melting dynamics. The threshold fluence is measured to be 0.7 J/cm2. The ultrafast ablation dynamics is studied by using pump and probe method. The result suggests that optical breakdown and ultrafast melting take place in ZnSe irradiated under femtosecond laser pulses.
Resumo:
Shellfish bed closures along the North Carolina coast have increased over the years seemingly concurrent with increases in population (Mallin 2000). More and faster flowing storm water has come to mean more bacteria, and fecal indicator bacterial (FIB) standards for shellfish harvesting are often exceeded when no source of contamination is readily apparent (Kator and Rhodes, 1994). Could management reduce bacterial loads if the source of the bacteria where known? Several potentially useful methods for differentiating human versus animal pollution sources have emerged including Ribotyping and Multiple Antibiotic Resistance (MAR) (US EPA, 2005). Total Maximum Daily Load (TMDL) studies on bacterial sources have been conducted for streams in NC mountain and Piedmont areas (U.S. EPA, 1991 and 2005) and are likely to be mandated for coastal waters. TMDL analysis estimates allowable pollutant loads and allocates them to known sources so management actions may be taken to restore water to its intended uses (U.S. EPA, 1991 and 2005). This project sought first to quantify and compare fecal contamination levels for three different types of land use on the coast, and second, to apply MAR and ribotyping techniques and assess their effectiveness for indentifying bacterial sources. Third, results from these studies would be applied to one watershed to develop a case study coastal TMDL. All three watershed study areas are within Carteret County, North Carolina. Jumping Run Creek and Pettiford Creek are within the White Oak River Basin management unit whereas the South River falls within the Neuse River Basin. Jumping Run Creek watershed encompasses approximately 320 ha. Its watershed was a dense, coastal pocosin on sandy, relic dune ridges, but current land uses are primarily medium density residential. Pettiford Creek is in the Croatan National Forest, is 1133 ha. and is basically undeveloped. The third study area is on Open Grounds Farm in the South River watershed. Half of the 630 ha. watershed is under cultivation with most under active water control (flashboard risers). The remaining portion is forested silviculture.(PDF contains 4 pages)
Resumo:
There was variation in the ingestion of the food objects by the sexes. Despite the similarity in rank-order of the food objects, the ingestion of the objects vary significantly (rg=0.320, P>0.05). Dipterans adult and Hymenoptera were the only food objects not eaten by the males whereas insect remains and unidentified bivalves were absent from the trophics spectrum of the females. There was significant increase in feeding intensity by females than males. There was significant increase in GRI by specimens from Nipa Creek whereas individuals from mangrove creek recorded higher MGF and vice-versa. Dipterans adult. Hymenoptera, insect remains, Neritina glabrata and unid bivalves were absent from dietaries for nipa creek whereas a complete array of the food objects were eaten in the mangrove creek. The present findings highlights the importance of the mangrove ecosystem as the native vegetation encompassing great diversity of food resources and living conditions than the succeeding alien nipa vegetation
Resumo:
The optical breakdown thresholds (OBTs) of typical dielectric and semiconductor materials are measured using double 40-fs laser pulses. By measuring the OBTs with different laser energy and different time delays between the two pulses, we found that the total energy of breakdown decrease for silica and increase for silicon with the increase of the first pulse energy. (C) 2005 Optical Society of America.
Resumo:
Ed. por Antonio Manuel González Carrillo
Resumo:
The dietary carbohydrate requirement of Heterobranchus longifilis was evaluated in two separate experiments.In the first experiment, varying levels of carbohydrate ranging from 28, 24 to58 72% were fed to the fish of mean weight 1.83~c0.02g. Results revealed that the polynomial regression curve for the mean weight gain and the carbohydrate levels did not present a point where Y-max is equal to X-max and so the requirement was not obtained. The second experiment was therefore, conducted with lower levels of carbohydrate ranging from 17.00 to 20.86% and fed to fish with mean weight 0.49~c0.02g. Based on growth and feed efficiency data the carbohydrate requirement was determined to be 19.5%
Resumo:
unavailable<br>H. Sun's e-mail address is shy780327@siom.ac.cn.
Resumo:
The epidemic of HIV/AIDS in the United States is constantly changing and evolving, starting from patient zero to now an estimated 650,000 to 900,000 Americans infected. The nature and course of HIV changed dramatically with the introduction of antiretrovirals. This discourse examines many different facets of HIV from the beginning where there wasn't any treatment for HIV until the present era of highly active antiretroviral therapy (HAART). By utilizing statistical analysis of clinical data, this paper examines where we were, where we are and projections as to where treatment of HIV/AIDS is headed.
Chapter Two describes the datasets that were used for the analyses. The primary database utilized was collected by myself from an outpatient HIV clinic. The data included dates from 1984 until the present. The second database was from the Multicenter AIDS Cohort Study (MACS) public dataset. The data from the MACS cover the time between 1984 and October 1992. Comparisons are made between both datasets.
Chapter Three discusses where we were. Before the first anti-HIV drugs (called antiretrovirals) were approved, there was no treatment to slow the progression of HIV. The first generation of antiretrovirals, reverse transcriptase inhibitors such as AZT (zidovudine), DDI (didanosine), DDC (zalcitabine), and D4T (stavudine) provided the first treatment for HIV. The first clinical trials showed that these antiretrovirals had a significant impact on increasing patient survival. The trials also showed that patients on these drugs had increased CD4+ T cell counts. Chapter Three examines the distributions of CD4 T cell counts. The results show that the estimated distributions of CD4 T cell counts are distinctly non-Gaussian. Thus distributional assumptions regarding CD4 T cell counts must be taken, into account when performing analyses with this marker. The results also show the estimated CD4 T cell distributions for each disease stage: asymptomatic, symptomatic and AIDS are non-Gaussian. Interestingly, the distribution of CD4 T cell counts for the asymptomatic period is significantly below that of the CD4 T cell distribution for the uninfected population suggesting that even in patients with no outward symptoms of HIV infection, there exists high levels of immunosuppression.
Chapter Four discusses where we are at present. HIV quickly grew resistant to reverse transcriptase inhibitors which were given sequentially as mono or dual therapy. As resistance grew, the positive effects of the reverse transcriptase inhibitors on CD4 T cell counts and survival dissipated. As the old era faded a new era characterized by a new class of drugs and new technology changed the way that we treat HIV-infected patients. Viral load assays were able to quantify the levels of HIV RNA in the blood. By quantifying the viral load, one now had a faster, more direct way to test antiretroviral regimen efficacy. Protease inhibitors, which attacked a different region of HIV than reverse transcriptase inhibitors, when used in combination with other antiretroviral agents were found to dramatically and significantly reduce the HIV RNA levels in the blood. Patients also experienced significant increases in CD4 T cell counts. For the first time in the epidemic, there was hope. It was hypothesized that with HAART, viral levels could be kept so low that the immune system as measured by CD4 T cell counts would be able to recover. If these viral levels could be kept low enough, it would be possible for the immune system to eradicate the virus. The hypothesis of immune reconstitution, that is bringing CD4 T cell counts up to levels seen in uninfected patients, is tested in Chapter Four. It was found that for these patients, there was not enough of a CD4 T cell increase to be consistent with the hypothesis of immune reconstitution.
In Chapter Five, the effectiveness of long-term HAART is analyzed. Survival analysis was conducted on 213 patients on long-term HAART. The primary endpoint was presence of an AIDS defining illness. A high level of clinical failure, or progression to an endpoint, was found.
Chapter Six yields insights into where we are going. New technology such as viral genotypic testing, that looks at the genetic structure of HIV and determines where mutations have occurred, has shown that HIV is capable of producing resistance mutations that confer multiple drug resistance. This section looks at resistance issues and speculates, ceterus parabis, where the state of HIV is going. This section first addresses viral genotype and the correlates of viral load and disease progression. A second analysis looks at patients who have failed their primary attempts at HAART and subsequent salvage therapy. It was found that salvage regimens, efforts to control viral replication through the administration of different combinations of antiretrovirals, were not effective in 90 percent of the population in controlling viral replication. Thus, primary attempts at therapy offer the best change of viral suppression and delay of disease progression. Documentation of transmission of drug-resistant virus suggests that the public health crisis of HIV is far from over. Drug resistant HIV can sustain the epidemic and hamper our efforts to treat HIV infection. The data presented suggest that the decrease in the morbidity and mortality due to HIV/AIDS is transient. Deaths due to HIV will increase and public health officials must prepare for this eventuality unless new treatments become available. These results also underscore the importance of the vaccine effort.
The final chapter looks at the economic issues related to HIV. The direct and indirect costs of treating HIV/AIDS are very high. For the first time in the epidemic, there exists treatment that can actually slow disease progression. The direct costs for HAART are estimated. It is estimated that the direct lifetime costs for treating each HIV infected patient with HAART is between $353,000 to $598,000 depending on how long HAART prolongs life. If one looks at the incremental cost per year of life saved it is only $101,000. This is comparable with the incremental costs per year of life saved from coronary artery bypass surgery.
Policy makers need to be aware that although HAART can delay disease progression, it is not a cure and HIV is not over. The results presented here suggest that the decreases in the morbidity and mortality due to HIV are transient. Policymakers need to be prepared for the eventual increase in AIDS incidence and mortality. Costs associated with HIV/AIDS are also projected to increase. The cost savings seen recently have been from the dramatic decreases in the incidence of AIDS defining opportunistic infections. As patients who have been on HAART the longest start to progress to AIDS, policymakers and insurance companies will find that the cost of treating HIV/AIDS will increase.
Resumo:
Raman spectroscopy on single, living epithelial cells captured in a laser trap is shown to have diagnostic power over colorectal cancer. This new single-cell technology comprises three major components: primary culture processing of human tissue samples to produce single-cell suspensions, Raman detection on singly trapped cells, and diagnoses of the cells by artificial neural network classifications. it is compared with DNA flow cytometry for similarities and differences. Its advantages over tissue Raman spectroscopy are also discussed. In the actual construction of a diagnostic model for colorectal cancer, real patient data were taken to generate a training set of 320 Raman spectra and, a test set of 80. By incorporating outlier corrections to a conventional binary neural classifier, our network accomplished significantly better predictions than logistic regressions, with sensitivity improved from 77.5% to 86.3% and specificity improved from 81.3% to 86.3% for the training set and moderate improvements for the test set. Most important, the network approach enables a sensitivity map analysis to quantitate the relevance of each Raman band to the normal-to-cancer transform at the cell level. Our technique has direct clinic applications for diagnosing cancers and basic science potential in the study of cell dynamics of carcinogenesis. (C) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Mexico, with highly diverse physiography, geology, soils and climate, is a country with a broad mosaic of aquatic ecosystems within 320 watersheds. This paper presents a brief picture of Mexican fresh waters, the distribution of rainfall and the potential for aquaculture. The main fish species and water bodies, dams and lakes, are highlighted. The country faces problems of surface water shortage which requires better management.
Resumo:
Raman spectroscopy on single, living epithelial cells captured in a laser trap is shown to have diagnostic power over colorectal cancer. This new single-cell technology comprises three major components: primary culture processing of human tissue samples to produce single-cell suspensions, Raman detection on singly trapped cells, and diagnoses of the cells by artificial neural network classifications. it is compared with DNA flow cytometry for similarities and differences. Its advantages over tissue Raman spectroscopy are also discussed. In the actual construction of a diagnostic model for colorectal cancer, real patient data were taken to generate a training set of 320 Raman spectra and, a test set of 80. By incorporating outlier corrections to a conventional binary neural classifier, our network accomplished significantly better predictions than logistic regressions, with sensitivity improved from 77.5% to 86.3% and specificity improved from 81.3% to 86.3% for the training set and moderate improvements for the test set. Most important, the network approach enables a sensitivity map analysis to quantitate the relevance of each Raman band to the normal-to-cancer transform at the cell level. Our technique has direct clinic applications for diagnosing cancers and basic science potential in the study of cell dynamics of carcinogenesis. (C) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Hydrogen is the only atom for which the Schr odinger equation is solvable. Consisting only of a proton and an electron, hydrogen is the lightest element and, nevertheless, is far from being simple. Under ambient conditions, it forms diatomic molecules H2 in gas phase, but di erent temperature and pressures lead to a complex phase diagram, which is not completely known yet. Solid hydrogen was rst documented in 1899 [1] and was found to be isolating. At higher pressures, however, hydrogen can be metallized. In 1935 Wigner and Huntington predicted that the metallization pressure would be 25 GPa [2], where molecules would disociate to form a monoatomic metal, as alkali metals that lie below hydrogen in the periodic table. The prediction of the metallization pressure turned out to be wrong: metallic hydrogen has not been found yet, even under a pressure as high as 320 GPa. Nevertheless, extrapolations based on optical measurements suggest that a metallic phase may be attained at 450 GPa [3]. The interest of material scientist in metallic hydrogen can be attributed, at least to a great extent, to Ashcroft, who in 1968 suggested that such a system could be a hightemperature superconductor [4]. The temperature at which this material would exhibit a transition from a superconducting to a non-superconducting state (Tc) was estimated to be around room temperature. The implications of such a statement are very interesting in the eld of astrophysics: in planets that contain a big quantity of hydrogen and whose temperature is below Tc, superconducting hydrogen may be found, specially at the center, where the gravitational pressure is high. This might be the case of Jupiter, whose proportion of hydrogen is about 90%. There are also speculations suggesting that the high magnetic eld of Jupiter is due to persistent currents related to the superconducting phase [5]. Metallization and superconductivity of hydrogen has puzzled scientists for decades, and the community is trying to answer several questions. For instance, what is the structure of hydrogen at very high pressures? Or a more general one: what is the maximum Tc a phonon-mediated superconductor can have [6]? A great experimental e ort has been carried out pursuing metallic hydrogen and trying to answer the questions above; however, the characterization of solid phases of hydrogen is a hard task. Achieving the high pressures needed to get the sought phases requires advanced technologies. Diamond anvil cells (DAC) are commonly used devices. These devices consist of two diamonds with a tip of small area; for this reason, when a force is applied, the pressure exerted is very big. This pressure is uniaxial, but it can be turned into hydrostatic pressure using transmitting media. Nowadays, this method makes it possible to reach pressures higher than 300 GPa, but even at this pressure hydrogen does not show metallic properties. A recently developed technique that is an improvement of DAC can reach pressures as high as 600 GPa [7], so it is a promising step forward in high pressure physics. Another drawback is that the electronic density of the structures is so low that X-ray di raction patterns have low resolution. For these reasons, ab initio studies are an important source of knowledge in this eld, within their limitations. When treating hydrogen, there are many subtleties in the calculations: as the atoms are so light, the ions forming the crystalline lattice have signi cant displacements even when temperatures are very low, and even at T=0 K, due to Heisenberg's uncertainty principle. Thus, the energy corresponding to this zero-point (ZP) motion is signi cant and has to be included in an accurate determination of the most stable phase. This has been done including ZP vibrational energies within the harmonic approximation for a range of pressures and at T=0 K, giving rise to a series of structures that are stable in their respective pressure ranges [8]. Very recently, a treatment of the phases of hydrogen that includes anharmonicity in ZP energies has suggested that relative stability of the phases may change with respect to the calculations within the harmonic approximation [9]. Many of the proposed structures for solid hydrogen have been investigated. Particularly, the Cmca-4 structure, which was found to be the stable one from 385-490 GPa [8], is metallic. Calculations for this structure, within the harmonic approximation for the ionic motion, predict a Tc up to 242 K at 450 GPa [10]. Nonetheless, due to the big ionic displacements, the harmonic approximation may not su ce to describe correctly the system. The aim of this work is to apply a recently developed method to treat anharmonicity, the stochastic self-consistent harmonic approximation (SSCHA) [11], to Cmca-4 metallic hydrogen. This way, we will be able to study the e ects of anharmonicity in the phonon spectrum and to try to understand the changes it may provoque in the value of Tc. The work is structured as follows. First we present the theoretical basis of the calculations: Density Functional Theory (DFT) for the electronic calculations, phonons in the harmonic approximation and the SSCHA. Then we apply these methods to Cmca-4 hydrogen and we discuss the results obtained. In the last chapter we draw some conclusions and propose possible future work.