996 resultados para correction-free
Resumo:
CONTEXT: A passive knee-extension test has been shown to be a reliable method of assessing hamstring tightness, but this method does not take into account the potential effect of gravity on the tested leg. OBJECTIVE: To compare an original passive knee-extension test with 2 adapted methods including gravity's effect on the lower leg. DESIGN: Repeated measures. SETTING: Laboratory. PARTICIPANTS: 20 young track and field athletes (16.6 ± 1.6 y, 177.6 ± 9.2 cm, 75.9 ± 24.8 kg). INTERVENTION: Each subject was tested in a randomized order with 3 different methods: In the original one (M1), passive knee angle was measured with a standard force of 68.7 N (7 kg) applied proximal to the lateral malleolus. The second (M2) and third (M3) methods took into account the relative lower-leg weight (measured respectively by handheld dynamometer and anthropometrical table) to individualize the force applied to assess passive knee angle. MAIN OUTCOME MEASURES: Passive knee angles measured with video-analysis software. RESULTS: No difference in mean individualized applied force was found between M2 and M3, so the authors assessed passive knee angle only with M2. The mean knee angle was different between M1 and M2 (68.8 ± 12.4 vs 73.1 ± 10.6, P < .001). Knee angles in M1 and M2 were correlated (r = .93, P < .001). CONCLUSIONS: Differences in knee angle were found between the original passive knee-extension test and a method with gravity correction. M2 is an improved version of the original method (M1) since it minimizes the effect of gravity. Therefore, we recommend using it rather than M1.
Resumo:
Résumé: Les environnements hémodynamiques, favorisant ou protégeant contre la formation de la plaque, induisent tout deux une augmentation de la production d'anion superoxide dans les cellules endothéliales (ECs). Par ailleurs, une régulation différente de l'expression des gènes a été décrite dans les cellules exposées à ces différentes conditions. Dans le but d'investiguer le rôle de l'augmentation du stress oxydatif dans l'expression des gènes régulée par le flux, nous avons d'abord exposé les EC à un flux unidirectionnel, non pulsé. Dans ces conditions, l'état oxydatif des cellules endothéliales est augmenté de façon transitoire. L'expression du gène de l'endothéline 1 (ET-1) est aussi induite de façon transitoire par un tel flux, alors que l'expression du gène de la nitiric oxyde synthase endothéliale (NOS III) est stimulé de façon durable. Au contraire, un flux unidirectionnel pulsé, qui induit une augmentation durable de la production d'anion superoxide, augmente aussi de façon durable l'expression des gènes de ET-1 comme de NOS III. Un flux oscillatoire (favorisant la plaque), qui lui aussi ,a des effets à long terme sur la production d'anion superoxide, a uniquement augmenté l'expression de ET-1. De plus, l'utilisation d'un antioxydant, a seulement partiellement inhibé la stimulation de l'expression du gène NOS III par le flux unidirectionnel pulsé, alors qu'il a complètement abrogé la stimulation de l'expression du gène ET-1 par le flux unidirectionnel pulsé et oscillatoire. Ceci suggère que les forces mécaniques régulent l'expression des gènes dans les EC par un double mécanisme dépendant et indépendant du stress oxidatif des cellules. Par ailleurs, ces résultats supportent ultérieurement l'hypothèse que la balance entre la réponse oxidative et anti-oxidante dans les cellules endothéliales exposées à un environnement hémodynamique est une des clés de la prédisposition à un dysfonctionnement endothélial observé dans des régions exposées à des flux perturbés. Abstract: Both plaque-free and plaque-prone hemodynamic environments induce an increase in the oxidative state of endothelial cells (ECs), whereas differential gene expression regulation was described in cells exposed to these conditions. In order to investigate the role of the increased oxidative state in flow-regulation of gene expression, we first exposed EC to non-pulsed unidirectional shear stress. These conditions only slightly increases ECs oxidative state and endothelin-1 (ET-1) mRNA expression, whereas endothelial nitric oxide synthase (NOS III) mRNA level were significantly up-regulated. On the contrary, both ET-1 and NOS III gene expression were significantly induced in EC exposed to pulsed-unidirectional flow (plaque-free). Only ET-1 gene expression was up-regulated by oscillatory flow (plaque-prone). Moreover, use of an antioxidant only partially inhibited NOS III gene up-regulation by unidirectional flow, whereas it completely abrogated ET-1 gene up-regulation by unidirectional and oscillatory flows. Thus suggesting that mechanical forces regulate gene expression in ECs both via oxidative stress-dependent and -independent mechanisms.
Resumo:
BACKGROUND: We investigated whether the free β-human chorionic gonadotropin (free β-hCG) would provide additional information to that provided by total hCG alone and thus be useful in future epidemiological studies relating hCG to maternal breast cancer risk. MATERIALS & METHODS: Cases (n = 159) and controls (n = 286) were a subset of our previous study within the Northern Sweden Maternity Cohort on total hCG during primiparous pregnancy and breast cancer risk. RESULTS: The associations between total hCG (hazard ratio: 0.79; 95% CI: 0.49-1.27), free β-hCG (hazard ratio: 0.85; 95% CI: 0.33-2.18) and maternal risk of breast cancer were very similar in all analyses and mutual adjustment for either one had minor effects on the risk estimates. CONCLUSION: In the absence of a reliable assay on intact hCG, total hCG alone can be used in epidemiological studies investigating hCG and breast cancer risk, as free β-hCG does not appear to provide any additional information.
Resumo:
A cutaneous horn was observed close to the free margin of the inferior right eyelid in a 26-year-old-male patient. A minimal resection was primarily performed. Histopathologic study disclosed a precancerous keratosis. As the tumor had not been entirely excised, a complementary resection was performed secondarily to obtain the entire resection of the tumor.
Resumo:
BACKGROUND: Transient balanced steady-state free-precession (bSSFP) has shown substantial promise for noninvasive assessment of coronary arteries but its utilization at 3.0 T and above has been hampered by susceptibility to field inhomogeneities that degrade image quality. The purpose of this work was to refine, implement, and test a robust, practical single-breathhold bSSFP coronary MRA sequence at 3.0 T and to test the reproducibility of the technique. METHODS: A 3D, volume-targeted, high-resolution bSSFP sequence was implemented. Localized image-based shimming was performed to minimize inhomogeneities of both the static magnetic field and the radio frequency excitation field. Fifteen healthy volunteers and three patients with coronary artery disease underwent examination with the bSSFP sequence (scan time = 20.5 ± 2.0 seconds), and acquisitions were repeated in nine subjects. The images were quantitatively analyzed using a semi-automated software tool, and the repeatability and reproducibility of measurements were determined using regression analysis and intra-class correlation coefficient (ICC), in a blinded manner. RESULTS: The 3D bSSFP sequence provided uniform, high-quality depiction of coronary arteries (n = 20). The average visible vessel length of 100.5 ± 6.3 mm and sharpness of 55 ± 2% compared favorably with earlier reported navigator-gated bSSFP and gradient echo sequences at 3.0 T. Length measurements demonstrated a highly statistically significant degree of inter-observer (r = 0.994, ICC = 0.993), intra-observer (r = 0.894, ICC = 0.896), and inter-scan concordance (r = 0.980, ICC = 0.974). Furthermore, ICC values demonstrated excellent intra-observer, inter-observer, and inter-scan agreement for vessel diameter measurements (ICC = 0.987, 0.976, and 0.961, respectively), and vessel sharpness values (ICC = 0.989, 0.938, and 0.904, respectively). CONCLUSIONS: The 3D bSSFP acquisition, using a state-of-the-art MR scanner equipped with recently available technologies such as multi-transmit, 32-channel cardiac coil, and localized B0 and B1+ shimming, allows accelerated and reproducible multi-segment assessment of the major coronary arteries at 3.0 T in a single breathhold. This rapid sequence may be especially useful for functional imaging of the coronaries where the acquisition time is limited by the stress duration and in cases where low navigator-gating efficiency prohibits acquisition of a free breathing scan in a reasonable time period.
Resumo:
AIMS: Although the coronary artery vessel wall can be imaged non-invasively using magnetic resonance imaging (MRI), the in vivo reproducibility of wall thickness measures has not been previously investigated. Using a refined magnetization preparation scheme, we sought to assess the reproducibility of three-dimensional (3D) free-breathing black-blood coronary MRI in vivo. METHODS AND RESULTS: MRI vessel wall scans parallel to the right coronary artery (RCA) were obtained in 18 healthy individuals (age range 25-43, six women), with no known history of coronary artery disease, using a 3D dual-inversion navigator-gated black-blood spiral imaging sequence. Vessel wall scans were repeated 1 month later in eight subjects. The visible vessel wall segment and the wall thickness were quantitatively assessed using a semi-automatic tool and the intra-observer, inter-observer, and inter-scan reproducibilities were determined. The average imaged length of the RCA vessel wall was 44.5+/-7 mm. The average wall thickness was 1.6+/-0.2 mm. There was a highly significant intra-observer (r=0.97), inter-observer (r=0.94), and inter-scan (r=0.90) correlation for wall thickness (all P<0.001). There was also a significant agreement for intra-observer, inter-observer, and inter-scan measurements on Bland-Altman analysis. The intra-class correlation coefficients for intra-observer (r=0.97), inter-observer (r=0.92), and inter-scan (r=0.86) analyses were also excellent. CONCLUSION: The use of black-blood free-breathing 3D MRI in conjunction with semi-automated analysis software allows for reproducible measurements of right coronary arterial vessel-wall thickness. This technique may be well-suited for non-invasive longitudinal studies of coronary atherosclerosis.
Resumo:
The Attorney General’s Consumer Protection Division receives hundreds of calls and consumer complaints every year. Follow these tips to avoid unexpected expense and disappointments. This record is about: Beware of “Free Trial Offers”
Resumo:
Images acquired using optical microscopes are inherently subject to vignetting effects due to imperfect illumination and image acquisition. However, such vignetting effects hamper accurate extraction of quantitative information from biological images, leading to less effective image segmentation and increased noise in the measurements. Here, we describe a rapid and effective method for vignetting correction, which generates an estimate for a correction function from the background fluorescence without the need to acquire additional calibration images. We validate the usefulness of this algorithm using artificially distorted images as a gold standard for assessing the accuracy of the applied correction and then demonstrate that this correction method enables the reliable detection of biologically relevant variation in cell populations. A simple user interface called FlattifY was developed and integrated into the image analysis platform YeastQuant to facilitate easy application of vignetting correction to a wide range of images.
Resumo:
The purpose of this study was to evaluate a free-breathing three-dimensional (3D) dual inversion-recovery (DIR) segmented k-space gradient-echo (turbo field echo [TFE]) imaging sequence at 3T for the quantification of aortic vessel wall dimensions. The effect of respiratory motion suppression on image quality was tested. Furthermore, the reproducibility of the aortic vessel wall measurements was investigated. Seven healthy subjects underwent 3D DIR TFE imaging of the aortic vessel wall with and without respiratory navigator. Subsequently, this sequence with respiratory navigator was performed twice in 10 healthy subjects to test its reproducibility. The signal-to-noise (SNR), contrast-to-noise ratio (CNR), vessel wall sharpness, and vessel wall volume (VWV) were assessed. Data were compared using the paired t-test, and the reproducibility of VWV measurements was evaluated using intraclass correlation coefficients (ICCs). SNR, CNR, and vessel wall sharpness were superior in scans performed with respiratory navigator compared to scans performed without. The ICCs concerning intraobserver, interobserver, and interscan reproducibility were excellent (0.99, 0.94, and 0.95, respectively). In conclusion, respiratory motion suppression substantially improves image quality of 3D DIR TFE imaging of the aortic vessel wall at 3T. Furthermore, this optimized technique with respiratory motion suppression enables assessment of aortic vessel wall dimensions with high reproducibility.
Resumo:
PURPOSE: To evaluate the effect of a real-time adaptive trigger delay on image quality to correct for heart rate variability in 3D whole-heart coronary MR angiography (MRA). MATERIALS AND METHODS: Twelve healthy adults underwent 3D whole-heart coronary MRA with and without the use of an adaptive trigger delay. The moment of minimal coronary artery motion was visually determined on a high temporal resolution MRI. Throughout the scan performed without adaptive trigger delay, trigger delay was kept constant, whereas during the scan performed with adaptive trigger delay, trigger delay was continuously updated after each RR-interval using physiological modeling. Signal-to-noise, contrast-to-noise, vessel length, vessel sharpness, and subjective image quality were compared in a blinded manner. RESULTS: Vessel sharpness improved significantly for the middle segment of the right coronary artery (RCA) with the use of the adaptive trigger delay (52.3 +/- 7.1% versus 48.9 +/- 7.9%, P = 0.026). Subjective image quality was significantly better in the middle segments of the RCA and left anterior descending artery (LAD) when the scan was performed with adaptive trigger delay compared to constant trigger delay. CONCLUSION: Our results demonstrate that the use of an adaptive trigger delay to correct for heart rate variability improves image quality mainly in the middle segments of the RCA and LAD.
Resumo:
Selostus: Väkirehuun lisätyn glyserolin tai vapaiden rasvahappojen tai näiden yhdistelmän vaikutus maidontuotantoon ja pötsifermentaatioon ruokittaessa lypsylehmiä säilörehuun perustuvalla ruokinnalla