1000 resultados para constituency influence
Resumo:
This paper presents the results of shaking table tests on model reinforced soil retaining walls in the laboratory. The influence of backfill relative density on the seismic response was studied through a series of laboratory model tests on retaining walls. Construction of model retaining walls in the laminar box mounted on shaking table, instrumentation and results from the shaking table tests are described in detail. Three types of walls: wrap- and rigid-faced reinforced soil walls and unreinforced rigid-faced walls constructed to different densities were tested for a relatively small excitation. Wrap-faced walls are further tested for higher base excitation at different frequencies and relative densities. It is observed from these tests that the effect of backfill density on the seismic performance of reinforced retaining walls is pronounced only at very low relative density and at the higher base excitation. The walls constructed with higher backfill relative density showed lesser face deformations and more acceleration amplifications compared to the walls constructed with lower densities when tested at higher base excitation. The response of wrap- and rigid-faced retaining walls is not much affected by the backfill relative density when tested at smaller base excitation. The effects of facing rigidity were evaluated to a limited extent. Displacements in wrap-faced walls are many times higher compared to rigid-faced walls. The results obtained from this study are helpful in understanding the relative performance of reinforced soil retaining walls constructed to when subjected to smaller and higher base excitation for the range of relative density employed in the testing program. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Transport plays an important role in the distribution of long-lived gases such as ozone and water vapour in the atmosphere. Understanding of observed variability in these gases as well as prediction of the future changes depends therefore on our knowledge of the relevant atmospheric dynamics. This dissertation studies certain dynamical processes in the stratosphere and upper troposphere which influence the distribution of ozone and water vapour in the atmosphere. The planetary waves that originate in the troposphere drive the stratospheric circulation. They influence both the meridional transport of substances as well as parameters of the polar vortices. In turn, temperatures inside the polar vortices influence abundance of the Polar Stratospheric Clouds (PSC) and therefore the chemical ozone destruction. Wave forcing of the stratospheric circulation is not uniform during winter. The November-December averaged stratospheric eddy heat flux shows a significant anticorrelation with the January-February averaged eddy heat flux in the midlatitude stratosphere and troposphere. These intraseasonal variations are attributable to the internal stratospheric vacillations. In the period 1979-2002, the wave forcing exhibited a negative trend which was confined to the second half of winter only. In the period 1958-2002, area, strength and longevity of the Arctic polar vortices do not exhibit significant long-term changes while the area with temperatures lower than the threshold temperature for PSC formation shows statistically significant increase. However, the Arctic vortex parameters show significant decadal changes which are mirrored in the ozone variability. Monthly ozone tendencies in the Northern Hemisphere show significant correlations (|r|=0.7) with proxies of the stratospheric circulation. In the Antarctic, the springtime vortex in the lower stratosphere shows statistically significant trends in temperature, longevity and strength (but not in area) in the period 1979-2001. Analysis of the ozone and water vapour vertical distributions in the Arctic UTLS shows that layering below and above the tropopause is often associated with poleward Rossby wave-breaking. These observations together with calculations of cross-tropopause fluxes emphasize the importance of poleward Rossby wave breaking for the stratosphere-troposphere exchange in the Arctic.
Resumo:
This thesis developed a model of factors that influence meeting the needs of family with a relative admitted to an adult intensive care unit. The results from the model indicate that several variables are significant in meeting the needs of families in ICU. The factors identified in this study should be considered when planning future intervention studies or implementing interventions into ICU clinical practice. Meeting the needs of families is an integral part of caring for a critically ill patient. ICU staff can minimise this stressful time for relatives by anticipating and addressing family needs.
Resumo:
In the present investigation, unidirectional grinding marks were attained on the steel plates. Then aluminium (Al) pins were slid at 0.2°, 0.6°, 1.0°, 1.4°, 1.8°, 2.2° and 2.6° tilt angles of the plate with the grinding marks perpendicular and parallel to the sliding direction under both dry and lubricated conditions using a pin-on-plate inclined sliding tester to understand the influence of tilt angle and grinding marks direction of the plate on coefficient of friction and transfer layer formation. It was observed that the transfer layer formation and the coefficient of friction depend primarily on the grinding marks direction of the harder mating surface. Stick-slip phenomenon was observed only under lubricated conditions. For the case of pins slid perpendicular to the unidirectional grinding marks stick-slip phenomenon was observed for tilt angles exceeding 0.6°, the amplitude of which increases with increasing tilt angles. However, for the case of the pins slid parallel to the unidirectional grinding marks the stick-slip phenomena was observed for angles exceeding 2.2°, the amplitude of which also increases with increasing tilt angle. The presence of stick-slip phenomena under lubricated conditions could be attributed to the molecular deformation of the lubricant component confined between asperities.
Resumo:
The study in its entirety focused on factors related to adolescents decisions concerning drug use. The term drug use is taken here to include the use of tobacco products, alcohol, narcotics, and other addictive substances. First, the reasons given for drug use (attributions) were investigated. Secondly, the influence of personal goals, the beliefs involved in decision making, psychosocial adjustment including body image and involvement with peers, and parental relationships on drug use were studied. Two cohorts participated in the study. In 1984, a questionnaire on reasons for drug use was administered to a sample of adolescents aged 14-16 (N=396). A further questionnaire was administered to another sample of adolescents aged 14-16 (N=488) in 1999. The results for both cohorts were analyzed in Articles I and II. In Articles III and IV further analysis was carried out on the second cohort (N=488). The research report presented here provides a synthesis of all four articles, together with material from a further analysis. In a comparison of the two cohorts it was found that the attributions for drug use had changed considerably over the intervening fifteen-year period. In relation to alcohol and narcotics use an increase was found in reasons involving inner subjective experiences, with mention of the good feeling and fun resulting from alcohol and narcotics use. In addition, the goals of alcohol consumption were increasingly perceived as drinking to get drunk, and for its own sake. The attributions for the adolescents own smoking behavior were quite different from the attributions for smoking by others. The attributions were only weakly influenced by the participants gender or by their smoking habits, either in 1984 or 1999. In relation to participants own smoking, the later questionnaire elicited more mention of inner subjective experiences involving "good feeling. In relation to the perceived reasons for other people s smoking, it elicited more responses connected with the notion of "belonging. In the second sample, the results indicated that the levels of body satisfaction among adolescent girls are lower than those among adolescent boys. Overall, dissatisfaction with one's physical appearance seemed to relate to drug use. Girls were also found to engage in more discussions than boys; this applied to (i) discussion with peers (concerning both intimate and general matters), and (ii) discussion with parents (concerning general matters). However, more than a quarter of the boys (out of the entire population) reported only low intimacy with both parents and peers. If both drinking and smoking were considered, it seemed that girls in particular who reported drinking and smoking also reported high intimacy with parents and peers. Boys who reported drinking and smoking reported only medium intimacy with parents and peers. In addition, having an intimate relationship with one's peers was associated with a greater tendency to drink purely in order to get drunk. Overall, the results seemed to suggest that drug use is connected with a close relationship with peers and (surprisingly) with a close relationship with parents. Nevertheless, there were also indications that to some extent peer relationships can also protect adolescents from smoking and alcohol use. The results, which underline the complexity of adolescent drug use, are taken up in the Discussion section. It may be that body image and/or other identity factors play a more prominent role in all drug use than has previously been acknowledged. It does appear that in the course of planning support campaigns for adolescents at risk of drug use, we should focus more closely on individuals and their inner world. More research on this field is clearly needed, and therefore some ideas for future research are also presented.
Resumo:
Theoretical expressions for stresses and displacements have been derived for bending under a ring load of a free shell, a shell embedded in a soft medium, and a shell containing a soft core. Numerical work has been done for typical cases with an Elliot 803 Digital Computer and influence lines are drawn therefrom.
Resumo:
Evidence has been presented to show that the autotrophic nitrifying organisms get stimulated in the mulberry rhizosphere. Three species of Pseudomonas, one each of Achromobacter and Bacillus capable of degrading methionine were shown to be stimulated in the rhizosphere. These bacteria were capable of reversing the inhibitory effect of methionine on soil nitrification. Two of them were able to form nitrite from methionine. The possibility that the increased nitrifying activity in the mulberry rhizosphere in the presence of methionine found in mulberry root exudations was the result of the activity of these organisms was suggested.
Resumo:
The Raman spectrum of DMSO is recorded with a Hilger two-prism spectrograph andλ 4358 Å excitation. In addition to all the Raman lines reported earlier, six new lines at 898, 925, 1223, 1309, 2811 and 2871 cm.−1 are observed and tentative assignments are given. The influence of solvents (CCl4, CHCl3, CH3COOH) on the S=O bond is also studied. A shift from the liquid phase value,i.e., 1043 cm.−1 to 1054, 1052 and 1009 cm.−1 in the respective solvents is observed. The possibilities of association effects and hydrogen bonding are discussed.
Resumo:
The spectra of glycine, its addition compounds and other amino-acids exhibit Raman lines in the region from 3250 cm.−1 to 2500 cm.−1 It has been shown that these lines cannot be assigned to N-H...O stretching vibrations, where the N atom has the covalency of three, but to N+-H...O stretching vibration where the N atom has the covalency of four. Using the data obtained with triglycine sulphate which has the largest number of N+-H...O bonds and whose H bond lengths are known, the correlation curve giving the relation between the N+-H...O stretching frequencies and the corresponding H bond lengths has been drawn. Using this correlation curve, the N+-H...O stretching frequencies appearing inα-glycine,γ-glycine, diglycine hydrochloride, diglycine hydrobromide,l-asparagine monohydrate anddl-alanine have been satisfactorily accounted for on the basis of the known hydrogen bond lengths in these substances.
Resumo:
A quantitative structural investigation was carried out on (1-y)PbZrxTi1-xO3-yPbZn(1/3)Nb(2/3)O(3) where y=0.1 and 0.2 ((1-y)PZT-yPZN). High resolution XRD data have been used for quantitative phase analysis. The nominal compositions were prepared by a two-step low temperature calcining solid-state method. The sintered samples show an average grain size of 1-2 mu m. It is demonstrated that the increase in the concentration of PZN leads to the shift of the morphotropic phase boundary (MPB) of PZT towards the PbZrO3 end member. In the present work, an effort has been made to quantitatively determine the MPB phase contents and to regain the coexistence of tetragonal and monoclinic phases by varying the value of x(i.e. Zr/Ti ratio). The width of the MPB becomes considerably larger for y=0.10 and 0.20 as compared to pure PZT. This is attributed to the considerably lower grain size of our samples resulting from the adopted preparation method. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this paper, an attempt is made to study the influence of external light waves on the thermoelectric power under strong magnetic field (TPSM) in ultrathin films (UFs), quantum wires (QWs) and quantum dots (QDs) of optoelectronic materials whose unperturbed dispersion relation of the conduction electrons are defined by three and two band models of Kane together with parabolic energy bands on the basis of newly formulated electron dispersion laws in each case. We have plotted the TPSM as functions of film thickness, electron concentration, light intensity and wavelength for UFs, QWs and ODs of InSb, GaAs, Hg1-xCdxTe and In1-xGaxAsyP1-y respectively. It appears from the figures that for UFs, the TPSM increases with increasing thickness in quantum steps, decreases with increasing electron degeneracy exhibiting entirely different types of oscillations and changes with both light intensity and wavelength and these two latter types of plots are the direct signature of light waves on opto-TPSM. For QWs, the opto-TPSM exhibits rectangular oscillations with increasing thickness and shows enhanced spiky oscillations with electron concentration per unit length. For QDs, the opto-TPSM increases with increasing film thickness exhibiting trapezoidal variations which occurs during quantum jumps and the length and breadth of the trapezoids are totally dependent on energy band constants. Under the condition of non-degeneracy, the results of opto-TPSM gets simplified into the well-known form of classical TPSM equation which the function of three constants only and being invariant of the signature of band structure.
Resumo:
The role of oxide surface chemical composition and solvent on ion solvation and ion transport of ``soggy sand'' electrolytes are discussed here. A ``soggy sand'' electrolyte system comprising dispersions of hydrophilic/hydrophobic functionalized aerosil silica in lithium perchlorate methoxy polyethylene glycol solution was employed for the study. Static and dynamic rheology measurements show formation of an attractive particle network in the case of the composite with unmodified aerosil silica (i.e., with surface silanol groups) as well as composites with hydrophobic alkane groups. While particle network in the composite with hydrophilic aerosil silica (unmodified) were due to hydrogen bonding, hydrophobic aerosil silica particles were held together via van der Waals forces. The network strength in the latter case (i.e., for hydrophobic composites) were weaker compared with the composite with unmodified aerosil silica. Both unmodified silica as well as hydrophobic silica composites displayed solid-like mechanical strength. No enhancement in ionic conductivity compared to the liquid electrolyte was observed in the case of the unmodified silica. This was attributed to the existence of a very strong particle network, which led to the ``expulsion'' of all conducting entities from the interfacial region between adjacent particles. The ionic conductivity for composites with hydrophobic aerosil particles displayed ionic conductivity dependent on the size of the hydrophobic chemical moiety. No spanning attractive particle network was observed for aerosil particles with surfaces modified with stronger hydrophilic groups (than silanol). The composite resembled a sol, and no percolation in ionic conductivity was observed.
Resumo:
Administration of chloromycetin has been found to enhance the oxygen uptake of the gut of the silkworm. The possibility that this increase might have been due to a thinning of the gut wall has been ruled out since the reduction in gut weight set in much later. Although glucose ultilization by the gut has been found to be increased in vitro, increase in oxygen uptake has not been affected in the presence of glucose. The possibility of a hormonal stimulation has been discussed.