876 resultados para computing and software systems
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents a mixed-integer linear programming model to solve the problem of allocating voltage regulators and fixed or switched capacitors (VRCs) in radial distribution systems. The use of a mixed-integer linear model guarantees convergence to optimality using existing optimization software. In the proposed model, the steady-state operation of the radial distribution system is modeled through linear expressions. The results of one test system and one real distribution system are presented in order to show the accuracy as well as the efficiency of the proposed solution technique. An heuristic to obtain the Pareto front for the multiobjective VRCs allocation problem is also presented. © 2012 Elsevier Ltd. All rights reserved.
SW-V: modelo de streaming de software baseado em técnicas de virtualização e transporte peer-to-peer
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Current scientific applications have been producing large amounts of data. The processing, handling and analysis of such data require large-scale computing infrastructures such as clusters and grids. In this area, studies aim at improving the performance of data-intensive applications by optimizing data accesses. In order to achieve this goal, distributed storage systems have been considering techniques of data replication, migration, distribution, and access parallelism. However, the main drawback of those studies is that they do not take into account application behavior to perform data access optimization. This limitation motivated this paper which applies strategies to support the online prediction of application behavior in order to optimize data access operations on distributed systems, without requiring any information on past executions. In order to accomplish such a goal, this approach organizes application behaviors as time series and, then, analyzes and classifies those series according to their properties. By knowing properties, the approach selects modeling techniques to represent series and perform predictions, which are, later on, used to optimize data access operations. This new approach was implemented and evaluated using the OptorSim simulator, sponsored by the LHC-CERN project and widely employed by the scientific community. Experiments confirm this new approach reduces application execution time in about 50 percent, specially when handling large amounts of data.
Resumo:
The development of cloud computing services is speeding up the rate in which the organizations outsource their computational services or sell their idle computational resources. Even though migrating to the cloud remains a tempting trend from a financial perspective, there are several other aspects that must be taken into account by companies before they decide to do so. One of the most important aspect refers to security: while some cloud computing security issues are inherited from the solutions adopted to create such services, many new security questions that are particular to these solutions also arise, including those related to how the services are organized and which kind of service/data can be placed in the cloud. Aiming to give a better understanding of this complex scenario, in this article we identify and classify the main security concerns and solutions in cloud computing, and propose a taxonomy of security in cloud computing, giving an overview of the current status of security in this emerging technology.
Resumo:
Communication and coordination are two key-aspects in open distributed agent system, being both responsible for the system’s behaviour integrity. An infrastructure capable to handling these issues, like TuCSoN, should to be able to exploit modern technologies and tools provided by fast software engineering contexts. Thesis aims to demonstrate TuCSoN infrastructure’s abilities to cope new possibilities, hardware and software, offered by mobile technology. The scenarios are going to configure, are related to the distributed nature of multi-agent systems where an agent should be located and runned just on a mobile device. We deal new mobile technology frontiers concerned with smartphones using Android operating system by Google. Analysis and deployment of a distributed agent-based system so described go first to impact with quality and quantity considerations about available resources. Engineering issue at the base of our research is to use TuCSoN against to reduced memory and computing capability of a smartphone, without the loss of functionality, efficiency and integrity for the infrastructure. Thesis work is organized on two fronts simultaneously: the former is the rationalization process of the available hardware and software resources, the latter, totally orthogonal, is the adaptation and optimization process about TuCSoN architecture for an ad-hoc client side release.
Resumo:
Modern software systems, in particular distributed ones, are everywhere around us and are at the basis of our everyday activities. Hence, guaranteeing their cor- rectness, consistency and safety is of paramount importance. Their complexity makes the verification of such properties a very challenging task. It is natural to expect that these systems are reliable and above all usable. i) In order to be reliable, compositional models of software systems need to account for consistent dynamic reconfiguration, i.e., changing at runtime the communication patterns of a program. ii) In order to be useful, compositional models of software systems need to account for interaction, which can be seen as communication patterns among components which collaborate together to achieve a common task. The aim of the Ph.D. was to develop powerful techniques based on formal methods for the verification of correctness, consistency and safety properties related to dynamic reconfiguration and communication in complex distributed systems. In particular, static analysis techniques based on types and type systems appeared to be an adequate methodology, considering their success in guaranteeing not only basic safety properties, but also more sophisticated ones like, deadlock or livelock freedom in a concurrent setting. The main contributions of this dissertation are twofold. i) On the components side: we design types and a type system for a concurrent object-oriented calculus to statically ensure consistency of dynamic reconfigurations related to modifications of communication patterns in a program during execution time. ii) On the communication side: we study advanced safety properties related to communication in complex distributed systems like deadlock-freedom, livelock- freedom and progress. Most importantly, we exploit an encoding of types and terms of a typical distributed language, session π-calculus, into the standard typed π- calculus, in order to understand their expressive power.
Resumo:
Data sets describing the state of the earth's atmosphere are of great importance in the atmospheric sciences. Over the last decades, the quality and sheer amount of the available data increased significantly, resulting in a rising demand for new tools capable of handling and analysing these large, multidimensional sets of atmospheric data. The interdisciplinary work presented in this thesis covers the development and the application of practical software tools and efficient algorithms from the field of computer science, aiming at the goal of enabling atmospheric scientists to analyse and to gain new insights from these large data sets. For this purpose, our tools combine novel techniques with well-established methods from different areas such as scientific visualization and data segmentation. In this thesis, three practical tools are presented. Two of these tools are software systems (Insight and IWAL) for different types of processing and interactive visualization of data, the third tool is an efficient algorithm for data segmentation implemented as part of Insight.Insight is a toolkit for the interactive, three-dimensional visualization and processing of large sets of atmospheric data, originally developed as a testing environment for the novel segmentation algorithm. It provides a dynamic system for combining at runtime data from different sources, a variety of different data processing algorithms, and several visualization techniques. Its modular architecture and flexible scripting support led to additional applications of the software, from which two examples are presented: the usage of Insight as a WMS (web map service) server, and the automatic production of a sequence of images for the visualization of cyclone simulations. The core application of Insight is the provision of the novel segmentation algorithm for the efficient detection and tracking of 3D features in large sets of atmospheric data, as well as for the precise localization of the occurring genesis, lysis, merging and splitting events. Data segmentation usually leads to a significant reduction of the size of the considered data. This enables a practical visualization of the data, statistical analyses of the features and their events, and the manual or automatic detection of interesting situations for subsequent detailed investigation. The concepts of the novel algorithm, its technical realization, and several extensions for avoiding under- and over-segmentation are discussed. As example applications, this thesis covers the setup and the results of the segmentation of upper-tropospheric jet streams and cyclones as full 3D objects. Finally, IWAL is presented, which is a web application for providing an easy interactive access to meteorological data visualizations, primarily aimed at students. As a web application, the needs to retrieve all input data sets and to install and handle complex visualization tools on a local machine are avoided. The main challenge in the provision of customizable visualizations to large numbers of simultaneous users was to find an acceptable trade-off between the available visualization options and the performance of the application. Besides the implementational details, benchmarks and the results of a user survey are presented.
Resumo:
Software systems need to continuously change to remain useful. Change appears in several forms and needs to be accommodated at different levels. We propose ChangeBoxes as a mechanism to encapsulate, manage, analyze and exploit changes to software systems. Our thesis is that only by making change explicit and manipulable can we enable the software developer to manage software change more effectively than is currently possible. Furthermore we argue that we need new insights into assessing the impact of changes and we need to provide new tools and techniques to manage them. We report on the results of some initial prototyping efforts, and we outline a series of research activities that we have started to explore the potential of ChangeBoxes.
Resumo:
Business strategy is important to all organizations. Nearly all Fortune 500 firms are implementing Enterprise Resource Planning (ERP) systems to improve the execution of their business strategy and to improve integration with its information technology (IT) strategy. Successful implementation of these multi-million dollar software systems are requiring new emphasis on change management and on Business and IT strategic alignment. This paper examines business and IT strategic alignment and seeks to explore whether an ERP implementation can drive business process reengineering and business and IT strategic alignment. An overview of business strategy and strategic alignment are followed by an analysis of ERP. The “As-Is/To-Be” process model is then presented and explained as a simple, but vital tool for improving business strategy, strategic alignment, and ERP implementation success.
Resumo:
The increasing amount of data available about software systems poses new challenges for re- and reverse engineering research, as the proposed approaches need to scale. In this context, concerns about meta-modeling and analysis techniques need to be augmented by technical concerns about how to reuse and how to build upon the efforts of previous research. Moose is an extensive infrastructure for reverse engineering evolved for over 10 years that promotes the reuse of engineering efforts in research. Moose accommodates various types of data modeled in the FAMIX family of meta-models. The goal of this half-day workshop is to strengthen the community of researchers and practitioners who are working in re- and reverse engineering, by providing a forum for building future research starting from Moose and FAMIX as shared infrastructure.
Resumo:
The increasing amount of data available about software systems poses new challenges for re- and reverse engineering research, as the proposed approaches need to scale. In this context, concerns about meta-modeling and analysis techniques need to be augmented by technical concerns about how to reuse and how to build upon the efforts of previous research. MOOSE is an extensive infrastructure for reverse engineering evolved for over 10 years that promotes the reuse of engineering efforts in research. MOOSE accommodates various types of data modeled in the FAMIX family of meta-models. The goal of this half-day workshop is to strengthen the community of researchers and practitioners who are working in re- and reverse engineering, by providing a forum for building future research starting from MOOSE and FAMIX as shared infrastructure.
Resumo:
eLearning supports the education in certain disciplines. Here, we report about novel eLearning concepts, techniques, and tools to support education in Software Engineering, a subdiscipline of computer science. We call this "Software Engineering eLearning". On the other side, software support is a substantial prerequisite for eLearning in any discipline. Thus, Software Engineering techniques have to be applied to develop and maintain those software systems. We call this "eLearning Software Engineering". Both aspects have been investigated in a large joint, BMBF-funded research project, termed MuSofT (Multimedia in Software Engineering). The main results are summarized in this paper.
Resumo:
The goal of this roadmap paper is to summarize the state-of-the-art and identify research challenges when developing, deploying and managing self-adaptive software systems. Instead of dealing with a wide range of topics associated with the field, we focus on four essential topics of self-adaptation: design space for self-adaptive solutions, software engineering processes for self-adaptive systems, from centralized to decentralized control, and practical run-time verification & validation for self-adaptive systems. For each topic, we present an overview, suggest future directions, and focus on selected challenges. This paper complements and extends a previous roadmap on software engineering for self-adaptive systems published in 2009 covering a different set of topics, and reflecting in part on the previous paper. This roadmap is one of the many results of the Dagstuhl Seminar 10431 on Software Engineering for Self-Adaptive Systems, which took place in October 2010.
Resumo:
Cloud Computing enables provisioning and distribution of highly scalable services in a reliable, on-demand and sustainable manner. However, objectives of managing enterprise distributed applications in cloud environments under Service Level Agreement (SLA) constraints lead to challenges for maintaining optimal resource control. Furthermore, conflicting objectives in management of cloud infrastructure and distributed applications might lead to violations of SLAs and inefficient use of hardware and software resources. This dissertation focusses on how SLAs can be used as an input to the cloud management system, increasing the efficiency of allocating resources, as well as that of infrastructure scaling. First, we present an extended SLA semantic model for modelling complex service-dependencies in distributed applications, and for enabling automated cloud infrastructure management operations. Second, we describe a multi-objective VM allocation algorithm for optimised resource allocation in infrastructure clouds. Third, we describe a method of discovering relations between the performance indicators of services belonging to distributed applications and then using these relations for building scaling rules that a CMS can use for automated management of VMs. Fourth, we introduce two novel VM-scaling algorithms, which optimally scale systems composed of VMs, based on given SLA performance constraints. All presented research works were implemented and tested using enterprise distributed applications.