935 resultados para collagen degradation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hereditary collagen dysplasias comprise a complex group of connective-tissue disorders that result in the reduced tensile strength of affected tissues. These processes are called cutaneous asthenia in the skin of dogs and cats. We report here the case of a crossbred male cat, aged 6 months, that presented with two skin wounds in the region of the right thorax and right iliac tuberosity. The skin of these regions and of the animal's dorsum was hyperextensible, smooth to the touch, and easily torn with minor trauma. Microscopic examination of skin samples revealed reduced dermal connective tissue consisting of shortened and fragmented collagen fibers. Normal fibers were intermingled with altered fibers. Ultrastructural changes in collagen fibers included disorientation of fibrils within the same bundle, marked spacing differences, and variation in the diameter of transverse sections. The fibrils maintained the transverse striations characteristic of normal collagen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rocha AL, Shirasu BK, Hayacibara RM, Magro-Filho O, Zanoni JN, Araujo MG. Clinical and histological evaluation of subepithelial connective tissue after collagen sponge implantation in the human palate. J Periodont Res 2012; 47: 758765. (c) 2012 John Wiley & Sons A/S Background and Objective: Successful root-coverage treatment depends on the thickness of the donor tissue. This study aimed to evaluate the thickness of donor tissue after augmentation of the connective tissue in the palatal area by implantation of lyophilized collagen sponge (Hemospon (R)). Material and Methods: Ten patients with an indication for root coverage, whose palate was deficient in adequate connective tissue, were recruited. The procedure was carried out in two stages. In the first stage, the palatal thickness in the donor site was measured at three standardized points (points 1, 2 and 3), from the distal of the canine to the distal of the first molar, and the lyophilized collagen sponge was inserted. In the second stage, the palatal thickness over the implant was measured (at points 1, 2 and 3), two biopsies of the palatal mucosa were collected one over the implant (experimental sample) and the other on the contralateral side (control sample) and then root-coverage treatment was performed. Analyses consisted of clinical assessment of the palatal measurements before and after sponge implantation, and histological assessment of the experimental and control biopsy samples. Data were analyzed using the Wilcoxon test. Results: Both analyses showed a significant increase in mean thickness, of 1.08 mm of neoformed tissue in the clinical analysis (the tissue at point 2 was the thickest of the three points) and of 0.53 mm in the histological analysis. Conclusion: The insertion of lyophilized collagen sponge induced a significant increase in the thickness of palatal connective tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To characterize the interaction of 1-Ethyl-3-[3-dimethylaminopropyl] carbodiimide Hydrochloride (EDC) with dentin matrix and its effect on the resin-dentin bond. Methods: Changes to the stiffness of demineralized dentin fragments treated with EDC/N-hydroxysuccinimide (NHS) in different solutions were evaluated at different time points. The resistance against enzymatic degradation was indirectly evaluated by ultimate tensile strength (UTS) test of demineralized dentin treated or not with EDC/NHS and subjected to collagenase digestion. Short- and long-term evaluations of the strength of resin-dentin interfaces treated with EDC/NHS for 1 h were performed using microtensile bond strength (mu TBS) test. All data (MPa) were individually analyzed using ANOVA and Tukey HSD tests (alpha = 0.05). Results: The different exposure times significantly increased the stiffness of dentin (p < 0.0001, control-5.15 and EDC/NHS-29.50), while no differences were observed among the different solutions of EDC/NHS (p = 0.063). Collagenase challenge did not affect the UTS values of EDC/NHS group (6.08) (p > 0.05), while complete degradation was observed for the control group (p = 0.0008, control-20.84 and EDC/NHS-43.15). EDC/NHS treatment did not significantly increase resin-dentin mu TBS, but the values remained stable after 12 months water storage (p < 0.05). Conclusions: Biomimetic use of EDC/NHS to induce exogenous collagen cross-links resulted in increased mechanical properties and stability of dentin matrix and dentin-resin interfaces. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 94B: 250-255, 2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Major problems with the treatment of osteomyelitis are associated with poor antibiotic distribution at the site of infection due to limited blood circulation to the skeletal tissue. Improved treatment procedures have been used in drug delivery systems that include bioceramics and natural and synthetic polymers. This work reports the development of anionic collagen:hydroxyapatite composite paste for sustained antibiotic release. Antibiotic release by the composite was characterized by two steps. In the first, 15.0 +/- 4.9% was released in the first 5 h (n = 53) by a normal Fick diffusion mechanism. In the second step, only 16.8 +/- 2.2% was released after 7 days. In conclusion, hydroxyapatite:anionic collagen composite can be an efficient support for sustained antibiotic release in the treatment of osteomyelitis because most of the antibiotic release may be associated with composite bioresorption, thus permitting antibiotic release throughout the healing process. Hydroxyapatite:anionic collagen paste showed good biocompatibility associated with bone tissue growth with material still being observed after 60 days from the time of implants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tissue response to polyanionic collagen matrices, prepared from bovine pericardium and implanted subperiosteally in rat calvaria, was studied. The materials were implanted in 72 male rats (Rattus norvegicus, albinus, Holtzman), randomly divided into four groups: GI-MBP hydrolyzed for 24 h; GII-MBP hydrolyzed for 36 h; GIII-MBP hydrolyzed for 48 h; GIV-native M BP. The materials were explanted after 15, 30 and 60 days and analyzed by routine histological procedures. Except for group IV (native bovine pericardium), polyanionic collagen from groups GI, GII and GIII showed low inflammatory reaction associated with bone formation, partially or completely integrated to the cranial bone; group GIV was characterized by an intense inflammatory reaction with occasional dystrophic mineralization and with occasional bone formation at 60 days when there was a decrease in the inflammatory reaction. Thus, the MBP from groups I, II and III were biologically compatible, enhancing bone formation with a slight delay at 60 days in GII. (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. The aim of this study was to evaluate the use of a collagen-based membrane compared with no treatment on guided bone regeneration by 3-dimensional computerized microtomography (mu CT).Study Design. Defects were created between the mesial and distal premolar roots of the second and third premolars (beagle dogs; n = 8). A collagen-based membrane (Vitala; Osteogenics Biomedical Inc., TX, USA) was placed in one of the defects (membrane group; n = 16), and the other was left untreated (no-membrane group; n = 16). Left and right sides provided healing samples for 2 and 16 weeks. Three-dimensional bone architecture was acquired by mu CT and categorized as fully regenerated (F, bone height and width) or nonregenerated (N).Results. Chi-square tests (95% level of significance) showed that tooth did not have an effect on outcome (P = .5). Significantly higher F outcomes were observed at 16 weeks than 2 weeks (P = .008) and in membrane group than in no-membrane group (P = .008).Conclusions. The collagen-based membrane influenced bone regeneration at the furcation. (Oral Surg Oral Med Oral Pathol Oral Radiol 2012;114:437-443)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Individuals with periodontal disease have increased risk of tooth loss, particularly in cases with associated loss of alveolar bone and periodontal ligament (PDL). Current treatments do not predictably regenerate damaged PDL. Collagen I is the primary component of bone and PDL extracellular matrix. SPARC/Osteonectin (SP/ON) is implicated in the regulation of collagen content in healthy PDL. In this study, periodontal disease was induced by injections of lipopolysaccharide (LPS) from Aggregatibacter actinomycetemcomitans in wild-type (WT) and SP/ON-null C57/B16 mice. A 20-mu g quantity of LPS was injected between the first and second molars 3 times a week for 4 weeks, whereas PBS control was injected into the contralateral maxilla. LPS injection resulted in a significant decrease in bone volume fraction in both genotypes; however, significantly greater bone loss was detected in SP/ON-null maxilla. SP/ON-null PDL exhibited more extensive degradation of connective tissue in the gingival tissues. Although total cell numbers in the PDL of SP/ON-null were not different from those in WT, the inflammatory infiltrate was reduced in SP/ON-null PDL. Histology of collagen fibers revealed marked reductions in collagen volume fraction and in thick collagen volume fraction in the PDL of SP/ON-null mice. SP/ON protects collagen content in PDL and in alveolar bone in experimental periodontal disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives. The aim of this study was to evaluate the cytotoxic effect of the monomers isobutyl methacrylate (IBMA) and 1,6-hexanediol dimethacrylate (1,6-HDMA), the plasticizer di-n-butyl phthalate (DBP), and the degradation by-products methacrylic acid (MA) and benzoic acid (BA) on L929 cells. Based on previous investigations on the release of these compounds from hard chairside reline resins, a range of concentrations (mu mol/L) were selected for the cytotoxicity tests (IBMA, 5.491406.57; 1,6-HDMA, 1.2239.32; DBP, 1.12143.8; MA, 9.07581; BA, 3.19409).Methods. Cytotoxic effects were assessed using MTT and 3H-thymidine assays after the cells had been exposed to the test compounds at the given concentrations for 24h. Cytotoxicity was rated based on cell viability relative to controls (cells exposed to medium without test substances).Results. DNA synthesis activity was inhibited by all compounds. Mitochondrial dehydrogenase activity decreased in cells treated with monomers, plasticizer and MA by-product, whereas no cytotoxic effect was observed on contact with BA at the majority of concentrations tested. The ranges of suppression for 3H-thymidine assay were: IBMA, 2595%; 1,6-HDMA, 9598%; DBP, 4098%; MA, 9799%; BA, 5471%. For MTT assay, the ranges of suppression were: IBMA, 096%; 1,6-HDMA, 2689%; DBP, 1780%; MA, 5266%; BA, 027%. The 3H-thymidine assay was more sensitive than the MTT assay.Significance. This study evaluated the cytotoxicity of a wide range of concentrations of monomers (IBMA and 1,6-HDMA), plasticizer (DBP) and degradation by-products (MA and BA), including those expected to be released from hard chairside reline resins. The differences observed in the cytotoxicity of these compounds, along with other properties, may assist the dental practitioners in the selection of reline materials with improved service life performance and low risk of adverse reactions in patients who wear relined dentures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)