582 resultados para clinopyroxene


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mineralogical and granulometric properties of glacial-marine surface sediments of the Weddell Sea and adjoining areas were studied in order to decipher spatial variations of provenance and transport paths of terrigenous detritus from Antarctic sources. The silt fraction shows marked spatial differences in quartz contents. In the sand fractions heavy-mineral assemblages display low mineralogical maturity and are dominated by garnet, green hornblende, and various types of clinopyroxene. Cluster analysis yields distinct heavy-mineral assemblages, which can be attributed to specific source rocks of the Antarctic hinterland. The configuration of modern mineralogical provinces in the near-shore regions reflects the geological variety of the adjacent hinterland. In the distal parts of the study area, sand-sized heavy minerals are good tracers of ice-rafting. Granulometric characteristics and the distribution of heavy-mineral provinces reflect maxima of relative and absolute accumulation of ice-rafted detritus in accordance with major iceberg drift tracks in the course of the Weddell Gyre. Fine-grained and coarse-grained sediment fractions may have different origins. In the central Weddell Sea, coarse ice-rafted detritus basically derives from East Antarctic sources, while the fine-fraction is discharged from weak permanent bottom currents and/or episodic turbidity currents and shows affinities to southern Weddell Sea sources. Winnowing of quartz-rich sediments through intense bottom water formation in the southern Weddell Sea provides muddy suspensions enriched in quartz. The influence of quartz-rich suspensions moving within the Weddell Gyre contour current can be traced as far as the continental slope in the northwestern Weddell Sea. In general, the focusing of mud by currents significantly exceeds the relative and absolute contribution of ice-rafted detritus beyond the shelves of the study area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lithological horizons have been distinguished in sediments cores from different parts of the Sea of Okhotsk based on primary descriptions of sediments and smear slides, and analyses of contents of both calcium carbonate and organic carbon, and opal. Sediment lithology has been correlated with oxygen isotope records and the standard isotope scale and radiocarbon data by AMS method for three cores studied in detail. This allowed to determine in detail periods of carbonaceous and diatomaceous ooze accumulation in the Sea of Okhotsk. Changes in magnetic susceptibility and grain size composition of sediments have been also compared with oxygen-isotope curves and radiocarbon datings. Obtained results confirm that variations in magnetic susceptibility are related with oxygen-isotope stages and influenced by climatic changes. Tephra interlayers K0, TR, K2, K3 have been identified by mineralogical analyses in all studied cores. Stratigraphic location of these tephra interlayers in detailed studied cores and their radiocarbon ages (8.1, 8.05, 26.8, and about 60 ka, respectively) provided base correlation between the interlayers and volcanic eruptions on the Kamchatka Peninsula and the Kuril Islands. This allows to use the former ones as time markers for deep-sea sediments of the Sea of Okhotsk. New lithostratigraphic and tephrochronologic data obtained allowed to correlate Upper Quaternary sediments from the Sea of Okhotsk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Middle Valley segment at the northern end of the Juan de Fuca Ridge is a deep extensional rift blanketed with 200-500 m of Pleistocene turbiditic sediment. Sites 857 and 858 were drilled during Ocean Drilling Program Leg 139 to determine whether these two sites were hydrologically linked end members of an active hydrothermal circulation system. Site 858 was placed in an area of active hydrothermal discharge with fluids up to 270°C venting through anhydrite-bearing mounds on top of altered sediment. The shallow basement of fine-grained basalt that underlies the vents at Site 858 is interpreted as a seamount that was subsequently buried by turbidites. Site 857 was placed 1.6 km south of the Site 858 vents in a zone of high heat flow and numerous seismically imaged ridge-parallel faults. Drilling at Site 857 encountered sediments that are increasingly altered with depth and that overlie a series of mafic sills at depths of 460-940 m below sea floor. Sill margins and adjacent baked sediment are highly altered to magnesian chlorite and crosscut with veins filled with quartz, chlorite, sulfides, epidote, and wairakite. The sill interiors vary from slightly altered, with unaltered plagioclase and clinopyroxene in a mesostasis replaced by chlorite, to local zones of intense alteration and brecciation. In these latter zones, the sill interiors are pervasively replaced by chlorite, epidote, quartz, pyrite, titanite, and rare actinolite. The most complete replacement is associated with brecciated horizons with low recovery and slickensides on fracture surfaces, which we interpret as intersections between faults and the sills. Geochemically, the alteration of the sill complex is reflected in significant whole-rock depletions in Ca, Sr, and Na with corresponding enrichments in Mg, Al, and most metals. The latter results from the formation of conspicuous sulfide poikiloblasts. In contrast, metamorphism of the Site 858 seamount includes incomplete albitization of plagioclase phenocrysts and replacement of sparse mafic phenocrysts. Much of the basement alteration at Site 858 is confined to crosscutting veins except for a highly altered and veined horizon at the contact between basaltic basement and the overlying sediment. The sill complex at Site 857 is more highly depleted in 18O (d18O = 2.4 per mil - 4.7 per mil) and more pervasively replaced by secondary minerals relative to the extrusives at Site 858 (d18O = 4.5 per mil - 5.5 per mil). There is no evidence of significant albitization of the plagioclase at Site 857, suggesting high Ca/Na in the pore fluids. Fluid-inclusion data from hydrothermal minerals in altered mafic rocks and veins at Sites 857 and 858 show a consistency of homogenization temperatures, varying from 245 to 270°C, which is within the range of temperatures observed for the fluids venting at Site 858. The consistency of the fluid inclusion temperatures, the lack of albitization within the Site 857 sills, and the apparently low water/rock ratio collectively suggest that the sill complex at Site 857 is in thermal equilibrium and being altered by a highly evolved Ca-rich fluid similar to the fluids now venting at Site 858. The alteration evident in these two deep crustal drillsites is a result of the ongoing hydrothermal circulation and is consistent with downhole logging results, instrumented borehole results, and hydrothermal fluid chemistry. The pervasive alteration of the laterally extensive sill-sediment complex at Site 857 determines the chemistry of the fluids that are venting at Site 858. The limited alteration of the Site 858 lavas suggests that this basement edifice acts as a penetrator or ventilator for the regional hydrothermal reservoir with much of the flow focussed at the highly altered and veined sediment-basalt contact.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drilling during Legs 137 and 140 of the Ocean Drilling Program deepened Hole 504B, the only hole to penetrate through the volcanic section and into the underlying hydrothermally altered sheeted dike complex, by 438.1 m to a total depth of 2000.4 meters below seafloor. This paper presents the secondary mineralogy, bulk-rock sulfur contents, and stable isotopic (O, S) compositions, plus oxygen isotopic compositions of secondary minerals from the lower sheeted dike complex drilled during Legs 137 and 140. Various evidence indicates higher temperatures of hydrothermal alteration in the lower dikes than in the upper dikes, including: the local presence of secondary clinopyroxene in the lower dikes; secondary anorthite and hornblende in the lower dikes vs. mainly actinolite and albite-oligoclase in the upper dikes; generally increasing Al and Ti contents of amphibole downward in the dike section; and greater 18O depletions of the lower dikes (d18O = 3.6-5.0 per mil) compared with the upper dikes. Early high-temperature alteration stages (T = 350°-500°C) resulted in 18O depletions and losses of metals (Cu, Zn) and sulfur from the rocks. Local incorporation of reduced seawater sulfate led to elevated d34S values of sulfide in the rocks (up to 2.5 per mil). Quartz + epidote formed in crosscutting veins at temperatures of 310°-320°C from more evolved fluids (d18O = 1 per mil). Late-stage lower-temperature (~250°C) reactions producing albite, prehnite, and zeolites in the rocks caused slight 18O enrichments, but these were insufficient to offset the 18O depletions caused by earlier higher-temperature reactions. Addition of anhydrite to the rocks during seawater recharge led to increased S contents of rocks that had previously lost S during axial hydrothermal alteration, and to further increases in d34S values of total S in the rocks (up to 12 per mil). Despite the evidence for seawater recharge to near the base of the sheeted dike complex, the paucity of late zeolites in the lower dikes suggests that late-stage, off-axis circulation was mainly restricted to the volcanics and shallowest dikes, or to localized high-permeability zones (faults) at depth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multi-proxy study including sedimentological, mineralogical, biogeochemical and micropaleontological methods was conducted on sediment core PS69/849-2 retrieved from Burton Basin, MacRobertson Shelf, East Antarctica. The goal of this study was to depict the deglacial and Holocene environmental history of the MacRobertson Land-Prydz Bay region. A special focus was put on the timing of ice-sheet retreat and the variability of bottom-water formation due to sea ice formation through the Holocene. Results from site PS69/849-2 provide the first paleo-environmental record of Holocene variations in bottom-water production probably associated to the Cape Darnley polynya, which is the second largest polynya in the Antarctic. Methods included end-member modeling of laser-derived high-resolution grain size data to reconstruct the depositional regimes and bottom-water activity. The provenance of current-derived and ice-transported material was reconstructed using clay-mineral and heavy-mineral analysis. Conclusions on biogenic production were drawn by determination of biogenic opal and total organic carbon. It was found that the ice shelf front started to retreat from the site around 12.8 ka BP. This coincides with results from other records in Prydz Bay and suggests warming during the early Holocene optimum next to global sea level rise as the main trigger. Ice-rafted debris was then supplied to the site until 5.5 cal. ka BP, when Holocene global sea level rise stabilized and glacial isostatic rebound on MacRobertson Land commenced. Throughout the Holocene, three episodes of enhanced bottom-water activity probably due to elevated brine rejection in Cape Darnley polynya occured between 11.5 and 9 cal. ka BP, 5.6 and 4.5 cal. ka BP and since 1.5 cal. ka BP. These periods are related to shifts from warmer to cooler conditions at the end of Holocene warm periods, in particular the early Holocene optimum, the mid-Holocene warm period and at the beginning of the neoglacial. In contrast, between 7.7 and 6.7 cal. ka BP, brine rejection shut down, maybe owed to warm conditions and pronounced open-water intervals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Petrographic and geochemical investigations were carried out on 21 ash layers from four sites of ODP Legs 113 and 114 in the southern Atlantic Ocean. With the help of geochemical data and petrographic characterization three rock series can be distinguished for stratigraphically different ash layers from Site 701 (Leg 114) located east of the South Sandwich Island Arc, whereas the Leg 113 tephras from the southern slope of the South Orkney Microcontinent belong to another magmatic series. Geochemical correlation of the Leg 113 tephras with possible source areas indicates that they were probably erupted from the Antarctic Peninsula. The Miocene ashes from Site 701 are probably derived from the now-extinct Discovery Arc, the precursor of the South Sandwich Islands. The Pliocene ashes from the site show some affinity with the South Shetland Islands, although the available data do not permit a clear correlation. The Quaternary ashes from Site 701 display a chemistry typical of island-arc tholeiites and are therefore most probably derived from eruptions on the South Sandwich Islands. Because of their distant position the southern Andes seem to be rather improbable as a potential source region for the tephra layers investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Volcanic ash layers (1-3 cm thick) are abundant in the North Aoba Basin drill sites but less common at forearc sites. Ash deposited on the forearc slopes is liable to be redistributed as turbidites. In addition, the westerly upper winds also minimize ash-fall on the western (forearc) side of the New Hebrides Island Arc. Crystalline components in the ashes are primarily plagioclase (An90-An44), clinopyroxene (Ca46Mg49Fe5-Ca43Mg33Fe24), olivine (Fo87-Fo62), and titanomagnetite. There are also small amounts of orthopyroxene, magnetite, apatite, and quartz. Glass shards occur in most of the ashes and range in composition from basalt to rhyolite. There is often a variety of glass compositions within a single ash layer. One explanation for this is that the rate of accumulation of ash from several different eruptions or eruptive phases exceeded the background sedimentation rate: there may also have been a certain amount of reworking. The high-K and low-K trends previously recognized in volcanic rocks from the New Hebrides Island Arc are clearly represented in the Leg 134 glasses. All of the ashes investigated here are thought to have originated from the Central Chain volcanoes. The source of the high-K group was probably the Central Basin volcanoes of Santa Maria, Aoba, and Ambrym. The lower-K series includes a distinctive group of dacites and is likely to have originated from the Epi-Tongoa-Tongariki sector of the arc where major pyroclastic eruptions, associated with caldera collapse, have occurred during the Holocene, perhaps as recently as 400 yr ago.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gabbronoritic cumulates drilled at DSDP Site 334 (Mid-Atlantic Ridge off the FAMOUS area) are neither crystallization products of the associated basalts, nor from any MORB composition documented along ocean ridges. Their parent melts are richer in SiO2 than MORB at a given MgO content, as attested by the crystallization sequence starting with an olivine+calcic and sub-calcic pyroxene assemblages. These melts are issued from a source highly depleted in incompatible elements, likely residual peridotite left after MORB extraction. To understand the role of water in the genesis of these lithologies whose occurrence in a mid-ocean ridge setting is rather puzzling, we performed a geochemical study on clinopyroxene separates following an analytical protocol able to remove the effects of water rock interactions post-dating their crystallization. Accordingly, the measured isotopic signatures can be used to trace magma sources. We find that Site 334 clinopyroxenes depart from the global mantle correlation: normal MORB values for the 143Nd/ 144Nd ratio (0.51307-0.51315) are associated to highly radiogenic 87Sr / 86Sr (0.7034-0.7067) ratios. This indicates that the parent melts of Site 334 cumulates are issued from a MORB source but that seawater contamination occurred at some stage of their genesis. The extent of contamination, traced by the Sr isotopic signature, is variable within all cumulates but more developed for gabbronorites sensus stricto, suggesting that seawater introduction was a continuous process during all the magmatic evolution of the system, from partial melting to fractional crystallization. Simple masse balance calculations are consistent with a contaminating agent having the characters of a highly hydrated (possibly water saturated) silica-rich melt depleted in almost all incompatible major, minor and trace elements relative to MORB. Mixing in various proportions of contaminated melts similar to the parent melts of Site 334 cumulates with MORB can account for part of the variability in the Sr isotopic signature of oceanic basalts, among other to the short wavelength isotopic "noise" superimposed on regional trends. We conclude that seawater introduction into residual peridotite at shallow depth beneath mid-ocean ridges can lead mantle rocks and their melts to follow complex P-T-fH2O paths that mimic petrogenetic contexts classically attributed to subduction zone environments, like the production of boninitic-andesitic magmas.