938 resultados para classification des Systèmes de Recommandation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Les écologistes reconnaissent depuis longtemps que les organismes sont soutenus par le flux, l’emmagasinage et le renouvellement d’énergie et de matériel de l’écosystème, puisqu’ils sont nécessaires au métabolisme biologique et à la construction de biomasse. L’importance des organismes dans la régularisation des processus écosystémiques est maintenant de plus en plus considérée. Situé au centre des chaînes trophiques aquatiques, le zooplancton influence les flux d’énergie et de matériel dans les écosystèmes. Plusieurs de leurs caractéristiques sont connues comme étant de bons indicateurs de leur effet sur l’environnement, notamment leur taille, contenu corporel et taux métabolique. La plupart de ces caractéristiques peuvent être appelées « traits fonctionnels ». Alors que l’emploi des traits devient de plus en plus populaire en écologie des communautés aquatiques, peu ont su utiliser cette approche afin de concrètement lier la structure des communautés zooplanctoniques aux processus écosystémiques. Dans cette étude, nous avons colligé les données provenant d’une grande variété de littérature afin de construire une base de données sur les traits du zooplancton crustacé contribuant directement ou indirectement aux flux de C, N et P dans les écosystèmes. Notre méta-analyse a permis d’assembler plus de 9000 observations sur 287 espèces et d’identifier par le fait même ce qu’il manque à nos connaissances. Nous avons examiné une série de corrélations croisées entre 16 traits, dont 35 étaient significatives, et avons exploré les relations entre les unités taxonomiques de même qu’entre les espèces marines et d’eaux douces. Notre synthèse a entre autres révélé des patrons significativement différents entre le zooplancton marin et dulcicole quant à leur taux de respiration et leur allométrie (masse vs. longueur corporelle). Nous proposons de plus une nouvelle classification de traits liant les fonctions des organismes à celles de l’écosystème. Notre but est d’offrir une base de données sur les traits du zooplancton, des outils afin de mieux lier les organismes aux processus écosystémiques et de stimuler la recherche de patrons généraux et de compromis entre les traits.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Actes du colloque international (Rome, Istituto di Studi Romani, 2009 et 2010).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dans l'apprentissage machine, la classification est le processus d’assigner une nouvelle observation à une certaine catégorie. Les classifieurs qui mettent en œuvre des algorithmes de classification ont été largement étudié au cours des dernières décennies. Les classifieurs traditionnels sont basés sur des algorithmes tels que le SVM et les réseaux de neurones, et sont généralement exécutés par des logiciels sur CPUs qui fait que le système souffre d’un manque de performance et d’une forte consommation d'énergie. Bien que les GPUs puissent être utilisés pour accélérer le calcul de certains classifieurs, leur grande consommation de puissance empêche la technologie d'être mise en œuvre sur des appareils portables tels que les systèmes embarqués. Pour rendre le système de classification plus léger, les classifieurs devraient être capable de fonctionner sur un système matériel plus compact au lieu d'un groupe de CPUs ou GPUs, et les classifieurs eux-mêmes devraient être optimisés pour ce matériel. Dans ce mémoire, nous explorons la mise en œuvre d'un classifieur novateur sur une plate-forme matérielle à base de FPGA. Le classifieur, conçu par Alain Tapp (Université de Montréal), est basé sur une grande quantité de tables de recherche qui forment des circuits arborescents qui effectuent les tâches de classification. Le FPGA semble être un élément fait sur mesure pour mettre en œuvre ce classifieur avec ses riches ressources de tables de recherche et l'architecture à parallélisme élevé. Notre travail montre que les FPGAs peuvent implémenter plusieurs classifieurs et faire les classification sur des images haute définition à une vitesse très élevée.