986 resultados para center manifolds


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weight room, Hutton Sports Center, 219 E. Sycamore St., Chapman College, Orange, California, March, 1979. The Harold Hutton Sports Center, completed in 1978, is named in honor of this former trustee, and made possible by a gift from his wife, Betty Hutton Williams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sculpture by R. Bret Price in front of the Harold Hutton Sports Center, 219 E. Sycamore St., Chapman College, Orange, California. The Harold Hutton Sports Center completed in 1978, is named in honor of this former trustee, and made possible by a gift from his wife, Betty Hutton Williams. Image used for holiday card by Chapman College president G. T. "Buck" Smith and his wife Joni.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Entrance, Hutton Sports Center, 219 E. Sycamore St., Chapman College, Orange, California. The Harold Hutton Sports Center, completed in 1978, is named in honor of this former trustee, and made possible by a gift from his wife, Betty Hutton Williams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six-building resident apartment complex in framing stage, December, 1973. Davis Community Center and Apartments opened September,1974 at 625 North Grand Street, Orange, California, named in honor of Chapman College's fourth president, Dr. John L. Davis. The five two-story apartment buildings were designed by Harold Gimeno & Associates of Santa Ana and built by the J. Ray Construction Company, Inc. of Costa Mesa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

View from balcony of one of five three-story apartment buildings of Davis Community Center and Apartments. The complex opened September,1974 at 625 North Grand Street, Orange, California, named in honor of Chapman College's fourth president, Dr. John L. Davis. The apartment buildings were designed by Harold Gimeno & Associates of Santa Ana and built by the J. Ray Construction Company, Inc. of Costa Mesa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Construction work on Davis Community Center and Apartments. The complex opened September,1974 at 625 North Grand Street, Orange, California, named in honor of Chapman College's fourth president, Dr. John L. Davis. The five three-story apartment buildings were designed by Harold Gimeno & Associates of Santa Ana and built by the J. Ray Construction Company, Inc. of Costa Mesa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Construction work on Davis Community Center and Apartments, 1974. The complex opened September, 1974 at 625 North Grand Street, Orange, California, named in honor of Chapman College's fourth president, Dr. John L. Davis. The five three-story apartment buildings were designed by Harold Gimeno & Associates of Santa Ana and built by the J. Ray Construction Company, Inc. of Costa Mesa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias de la Administración con Especialidad en Relaciones Industriales) UANL

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias de la Administración con Especialidad en Relaciones Industriales) UANL

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aggregates of oxygen vacancies (F centers) represent a particular form of point defects in ionic crystals. In this study we have considered the combination of two oxygen vacancies, the M center, in the bulk and on the surface of MgO by means of cluster model calculations. Both neutral and charged forms of the defect M and M+ have been taken into account. The ground state of the M center is characterized by the presence of two doubly occupied impurity levels in the gap of the material; in M+ centers the highest level is singly occupied. For the ground-state properties we used a gradient corrected density functional theory approach. The dipole-allowed singlet-to-singlet and doublet-to-doublet electronic transitions have been determined by means of explicitly correlated multireference second-order perturbation theory calculations. These have been compared with optical transitions determined with the time-dependent density functional theory formalism. The results show that bulk M and M+ centers give rise to intense absorptions at about 4.4 and 4.0 eV, respectively. Another less intense transition at 1.3 eV has also been found for the M+ center. On the surface the transitions occur at 1.6 eV (M+) and 2 eV (M). The results are compared with recently reported electron energy loss spectroscopy spectra on MgO thin films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The set of vertices that maximize (minimize) the remoteness is the antimedian (median) set of the profile. It is proved that for an arbitrary graph G and S V (G) it can be decided in polynomial time whether S is the antimedian set of some profile. Graphs in which every antimedian set is connected are also considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a set S of vertices and the vertex v in a connected graph G, max x2S d(x, v) is called the S-eccentricity of v in G. The set of vertices with minimum S-eccentricity is called the S-center of G. Any set A of vertices of G such that A is an S-center for some set S of vertices of G is called a center set. We identify the center sets of certain classes of graphs namely, Block graphs, Km,n, Kn −e, wheel graphs, odd cycles and symmetric even graphs and enumerate them for many of these graph classes. We also introduce the concept of center number which is defined as the number of distinct center sets of a graph and determine the center number of some graph classes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To various degrees, insects in nature adapt to and live with two fundamental environmental rhythms around them: (1) the daily rhythm of light and dark, and (2) the yearly seasonal rhythm of the changing photoperiod (length of light per day). It is hypothesized that two biological clocks evolved in organisms on earth which allow them to harmonize successfully with the two environmental rhythms: (1) the circadian clock, which orchestrates circadian rhythms in physiology and behavior, and (2) the photoperiodic clock, which allows for physiological adaptations to changes in photoperiod during the course of the year (insect photoperiodism). The circadian rhythm is endogenous and continues in constant conditions, while photoperiodism requires specific light inputs of a minimal duration. Output pathways from both clocks control neurosecretory cells which regulate growth and reproduction. This dissertation focuses on the question whether different photoperiods change the network and physiology of the circadian clock of an originally equatorial cockroach species. It is assumed that photoperiod-dependent plasticity of the cockroach circadian clock allows for adaptations in physiology and behavior without the need for a separate photoperiodic clock circuit. The Madeira cockroach Rhyparobia maderae is a well established circadian clock model system. Lesion and transplantation studies identified the accessory medulla (aMe), a small neuropil with about 250 neurons, as the cockroach circadian pacemaker. Among them, the pigment-dispersing factor immunoreactive (PDF-ir) neurons anterior to the aMe (aPDFMes) play a key role as inputs to and outputs of the circadian clock system. The aim of my doctoral thesis was to examine whether and how different photoperiods modify the circadian clock system. With immunocytochemical studies, three-dimensional (3D) reconstruction, standardization and Ca2+-imaging technique, my studies revealed that raising cockroaches in different photoperiods changed the neuronal network of the circadian clock (Wei and Stengl, 2011). In addition, different photoperiods affected the physiology of single, isolated circadian pacemaker neurons. This thesis provides new evidence for the involvement of the circadian clock in insect photoperiodism. The data suggest that the circadian pacemaker system of the Madeira cockroach has the plasticity and potential to allow for physiological adaptations to different photoperiods. Therefore, it may express also properties of a photoperiodic clock.