966 resultados para calcium phosphate cements


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phosphate mineral series eosphorite–childrenite–(Mn,Fe)Al(PO4)(OH)2·(H2O) has been studied using a combination of electron probe analysis and vibrational spectroscopy. Eosphorite is the manganese rich mineral with lower iron content in comparison with the childrenite which has higher iron and lower manganese content. The determined formulae of the two studied minerals are: (Mn0.72,Fe0.13,Ca0.01)(Al)1.04(PO4, OHPO3)1.07(OH1.89,F0.02)·0.94(H2O) for SAA-090 and (Fe0.49,Mn0.35,Mg0.06,Ca0.04)(Al)1.03(PO4, OHPO3)1.05(OH)1.90·0.95(H2O) for SAA-072. Raman spectroscopy enabled the observation of bands at 970 cm−1 and 1011 cm−1 assigned to monohydrogen phosphate, phosphate and dihydrogen phosphate units. Differences are observed in the area of the peaks between the two eosphorite minerals. Raman bands at 562 cm−1, 595 cm−1, and 608 cm−1 are assigned to the �4 bending modes of the PO4, HPO4 and H2PO4 units; Raman bands at 405 cm−1, 427 cm−1 and 466 cm−1 are attributed to the �2 modes of these units. Raman bands of the hydroxyl and water stretching modes are observed. Vibrational spectroscopy enabled details of the molecular structure of the eosphorite mineral series to be determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pegmatite mineral qingheiite Na2(Mn2+,Mg,Fe2+)2(Al,Fe3+)(PO4)3 has been studied by a combination of SEM and EMP, Raman and infrared spectroscopy. The studied sample was collected from the Santa Ana pegmatite, Argentina. The mineral occurs as a primary mineral in lithium bearing pegmatite, in association with beausite and lithiophilite. The Raman spectrum is characterized by a very sharp intense Raman band at 980 cm�1 assigned to the PO3�4 symmetric stretching mode. Multiple Raman bands are observed in the PO3�4 antisymmetric stretching region, providing evidence for the existence of more than one phosphate unit in the structure of qingheiite and evidence for the reduction in symmetry of the phosphate units. This concept is affirmed by the number of bands in the m4 and m2 bending regions. No intensity was observed in the OH stretching region in the Raman spectrum but significant intensity is found in the infrared spectrum. Infrared bands are observed at 2917, 3195, 3414 and 3498 cm�1 are assigned to water stretching vibrations. It is suggested that some water is coordinating the metal cations in the structure of qingheiite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the mineral senagalite, a hydrated hydroxy phosphate of aluminium with formula Al2(PO4)(OH)3⋅3H2O using a combination of electron microscopy and vibrational spectroscopy. Senegalite crystal aggregates shows tabular to prismatic habitus and orthorhombic form. The Raman spectrum is dominated by an intense band at 1029 cm−1 assigned to the PO43- ν1 symmetric stretching mode. Intense Raman bands are found at 1071 and 1154 cm−1 with bands of lesser intensity at 1110, 1179 and 1206 cm−1 and are attributed to the PO43- ν3 antisymmetric stretching vibrations. The infrared spectrum shows complexity with a series overlapping bands. A comparison is made with spectra of other aluminium containing phosphate minerals such as augelite and turquoise. Multiple bands are observed for the phosphate bending modes giving support for the reduction of symmetry of the phosphate anion. Vibrational spectroscopy offers a means for the assessment of the structure of senagalite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral kulanite BaFe2Al2(PO4)3(OH)3, a barium iron aluminum phosphate, has been studied by using a combination of electron microscopy and vibrational spectroscopy. Scanning electron microscopy with EDX shows the mineral is homogenous with no other phases present. The Raman spectrum is dominated by an intense band at 1022 cm−1 assigned to the PO43-ν1 symmetric stretching mode. Low intensity Raman bands at 1076, 1110, 1146, 1182 cm−1 are attributed to the PO43-ν3 antisymmetric stretching vibrations. The infrared spectrum shows a complex spectral profile with overlapping bands. Multiple phosphate bending vibrations supports the concept of a reduction in symmetry of the phosphate anion. Raman spectrum at 3211, 3513 and 3533 cm−1 are assigned to the stretching vibrations of the OH units. Vibrational spectroscopy enables aspects on the molecular structure of kulanite to be assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research was done on lazulite samples from the Gentil mine, a lithium bearing pegmatite located in the municipality of Mendes Pimentel, Minas Gerais, Brazil. Chemical analysis was carried out by electron microprobe analysis and indicated a magnesium rich phase with partial substitution of iron. Traces of Ca and Mn, (which partially replaced Mg) were found. The calculated chemical formula of the studied sample is: (Mg0.88, Fe0.11)Al1.87(PO4)2.08(OH)2.02. The Raman spectrum of lazulite is dominated by an intense sharp band at 1060 cm-1 assigned to PO stretching vibrations of of tetrahedral [PO4] clusters presents into the HPO2/4- units. Two Raman bands at 1102 and 1137 cm-1 are attributed to both the HOP and PO antisymmetric stretching vibrations. The two infrared bands at 997 and 1007 cm-1 are attributed to the m1 PO3/4- symmetric stretching modes. The intense bands at 1035, 1054, 1081, 1118 and 1154 cm-1 are assigned to the v3PO3/4- antisymmetric stretching modes from both the HOP and tetrahedral [PO4] clusters. A set of Raman bands at 605, 613, 633 and 648 cm-1 are assigned to the m4 out of plane bending modes of the PO4, HPO4 and H2PO4 units. Raman bands observed at 414, 425, 460, and 479 cm-1 are attributed to the m2 tetrahedral PO4 clusters, HPO4 and H2PO4 bending modes. The intense Raman band at 3402 and the infrared band at 3403 cm-1 are assigned to the stretching vibration of the OH units. A combination of Raman and infrared spectroscopy enabled aspects of the molecular structure of the mineral lazulite to be understood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bermanite Mn2þMn3þ2 ðPO4Þ2ðOHÞ2 � 4ðH2OÞ is a mixed valent hydrated hydroxy phosphate mineral. The mineral is reddish-brown and occurs in crystal aggregates and as lamellar masses. Bermanite is a common mineral in granitic pegmatites. The chemical composition of bermanite was obtained using EDS techniques. We have studied the molecular structure of bermanite using vibrational spectroscopy. The mineral is characterized by a Raman doublet at 991 and 999 cm-1 attributed to the phosphate stretching mode of two non-equivalent phosphate units. Raman bands at 1071, 1117 and 1142 cm-1 are assigned to the phosphate antisymmetric stretching modes. The hydroxyl stretching spectral region is complex with overlapping bands attributed to water and hydroxyl stretching vibrations. Vibrational spectroscopy proves most useful for the study of the mineral bermanite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic goethite and thermally treated goethite at different temperatures were used to remove phosphate from sewage. The effect of annealing temperature on phosphate removal over time was investigated. X-ray diffraction(XRD), transmission electron microscopy (TEM), N2 adsorption and desorption (BET), and infrared emission spectrum (FT-IES) were utilized to characterize the phase, morphology, specific surface area, pore distribution, and the surface groups of samples. The results show that annealed products of goethite at temperatures over 250 °C are hematite with the similar morphology as the original goethite with different hydroxyl groups and surface area. Increasing temperature causes the decrease in hydroxyl groups, consequential increase in surface area at first and then experiences a decrease (14.8–110.4–12.6 m2/g) and the subsequent formation of nanoscale pores. The variation rate of hydroxyl groups and surface area based on FT-IES and BET, respectively, are used to evaluate the effect of annealing temperature on phosphate removal. By using all of the characterization techniques, it is concluded that the changes of phosphate removal basically result from the total variation rate between hydroxyl groups and surface area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral natrodufrénite a secondary pegmatite phosphate mineral from Minas Gerais, Brazil, has been studied by a combination of scanning electron microscopy and vibrational spectroscopic techniques. Electron probe analysis shows the formula of the studied mineral as (Na0.88Ca0.12)∑1.00(Mn0.11Mg0.08Ca0.04Zr0.01Cu0.01)∑0.97(Al0.02)∑4.91(PO4)3.96(OH6.15F0.07)6.22⋅2.05(H2O). Raman spectroscopy identifies an intense peak at 1003 cm−1 assigned to the ν1 symmetric stretching mode. Raman bands are observed at 1059 and 1118 cm−1 and are attributed to the ν3 antisymmetric stretching vibrations. A comparison is made with the spectral data of other hydrate hydroxy phosphate minerals including cyrilovite and wardite. Raman bands at 560, 582, 619 and 668 cm−1 are assigned to the ν4 bending modes and Raman bands at 425, 444, 477 and 507 cm−1 are due to the ν2 bending modes. Raman bands in the 2600–3800 cm−1 spectral range are attributed to water and OH stretching vibrations. Vibrational spectroscopy enables aspects of the molecular structure of natrodufrénite to be assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteocytes, known to act as the main regulators of bone homeostasis, have become a major focus in the field of bone research. Bioactive ceramics have been widely used for bone regeneration. However, there are few studies about the interaction of osteocytes with bioceramics. The effects of osteocytes on the in vitro and in vivo osteogenesis of bioceramics are also unclear. The aim of this study was to investigate the role of osteocytes on the b-tricalcium phosphate (b-TCP) stimulated osteogenesis. It was found that osteocytes responded to the b-TCP stimulation, leading to the release of Wnt (wingless-related MMTV integration site), which enhanced osteogenic differentiation of bone marrow stromal cells via Wnt signaling pathway. Receptor activator of nuclear factor kappa B ligand, an osteoclast inducer, was also upregulated, indicating that osteocytes would also participated in activation of osteoclasts, which played a major role in the degradation process of b-TCP and new bone remodeling. In vivo studies further demonstrated that when the material was completely embedded by newly formed bone, the only cell contacting with the material was osteocyte. However, the material would eventually be degraded and replaced by the new bone, requiring the participation of osteoclasts and osteoblasts, which were demonstrated by using immunostaining in this study. As the only cell contacting with the material, osteocytes probably acted in a regulatory role to regulate the surrounding osteoclasts and osteoblasts. Osteocytes were also found to participate in the maturation of osteoblasts and the mineralization process of biomaterials, by upregulating E11 (podoplanin) and dentin matrix protein 1 expression. These findings indicated that osteocytes involved in bone biomaterial-mediated osteogenesis and biomaterial degradation, providing valuable insights into the mechanism of material-stimulated osteogenesis, and a novel strategy to optimize the evaluating system for the biological properties of biomaterials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In our laboratory, we have developed methods in real-time detection and quantitative-polymerase chain reaction (Q-PCR) to analyse the relative levels of gene expression in post mortem brain tissues. We have then applied this method to examine differences in gene activity between normal white matter (NWM) and plaque tissue from multiple sclerosis (MS) patients. Genes were selected based on their association with pathology and through identification by previously conducted global gene expression analysis. Plaque tissue was obtained from secondary progressive (SP) patients displaying chronic active, as well as acute pathologies; while NWM from the same location was obtained from age- and sex-matched controls (normal patients). In this study, we used both SYBR Green I supplementation and commercially available mixes to assess both comparative and absolute levels of gene activity. The results of both methods compared favourably for four of the five genes examined (P < 0.05, Pearsons), while differences in gene expression between chronic active and acute pathologies were also identified. For example, a >50-fold increase in osteopontin (Spp1) and inositol 1-4-5 phosphate 3 kinase B (Itpkb) levels in acute plaques contrasted with the 5-fold or less increase in chronic active plaques (P < 0.05, unpaired t test). By contrast, there was no significant difference in the levels of the MS marker and calcium-dependent protease (Calpain, Capns1) in MS plaque tissue. In summary, Q-PCR analysis using SYBR Green I has allowed us to economically obtain what may be clinically significant information from small amounts of the CNS, providing an opportunity for further clinical investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural single-crystal specimens of barbosalite from Brazil, with general formula Fe2+Fe3+ 2 (PO4)2(OH)2 were investigated by Raman and infrared spectroscopy. The mineral occurs as secondary products in granitic pegmatites. The Raman spectrum of barbosalite is characterized by bands at 1020, 1033 and 1044 cm−1 cm−1, assigned to ν1 symmetric stretching mode of the HOPO3- 3 and PO3- 4 units. Raman bands at around 1067, 1083 and 1138 cm−1 are attributed to both the HOP and PO antisymmetric stretching vibrations. The set of Raman bands observed at 575, 589 and 606 cm−1 are assigned to the ν4 out of plane bending modes of the PO4 and H2PO4 units. Raman bands at 439, 461, 475 and 503 cm−1 are attributed to the ν2 PO4 and H2PO4 bending modes. Strong Raman bands observed at 312, 346 cm−1 with shoulder bands at 361, 381 and 398 cm−1 are assigned to FeO stretching vibrations. No bands which are attributable to water vibrations were found. Vibrational spectroscopy enables aspects of the molecular structure of barbosalite to be assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solution chemistry plays a significant role in the rate and type of foulant formed on heated industrial surfaces. This paper describes the effect of sucrose, silica (SiO2), Ca2+ and Mg2+ ions, and trans-aconitic acid on the kinetics and solubility of SiO2 and calcium oxalate monohydrate (COM) in mixed salt solutions containing sucrose and refines models previously proposed. The developed SiO2 models show that sucrose and SiO2 concentrations are the main parameters that determine apparent order (n) and apparent rate of reaction (k) and SiO2 solubility over a 24 h period. The calcium oxalate solubility model shows that while increasing [Mg2+] increases COM solubility, the reverse is so with increasing sucrose concentrations. The role of solution species on COM crystal habit is discussed and the appearance of the uncommon (001) face is explained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This randomised trial was designed to investigate the activity and toxicity of continuous infusion etoposide phosphate (EP), targeting a plasma etoposide concentration of either 3 μg/ml for five days (5d) or 1 μg/ml for 15 days (15d), in previously untreated SCLC patients with extensive disease. Patients and methods: EP was used as a single agent. Plasma etoposide concentration was monitored on days 2 and 4 in patients receiving 5d EP and on days 2, 5, 8 and 11 in patients receiving 15d EP, with infusion modification to ensure target concentrations were achieved. Treatment was repeated every 21 days for up to six cycles, with a 25% reduction in target concentration in patients with toxicity. Results: The study has closed early after entry of 29 patients (14 with 5d EP, 15 with 15d EP). Objective responses were seen in seven of 12 (58%, confidence interval (CI): 27%-85%) evaluable patients after 5d EP, and two of 14 (14%, CI: 4%42%) evaluable patients after 15d EP (P = 0.038). Grade 3 or 4 neutropenia or leucopenia during the first cycle of treatment was observed in six of 12 patients after 5d EP and 0/14 patients after 15d EP (P = 0.004), with median nadir WBC count of 2.6 x 109/1 after 5d and 5.0 x 109/1 after 15d EP (P = 0.017). Only one of 49 cycles of 15d EP was associated with grade 3 or worse haematological toxicity, compared to 14 of 61 cycles of 5d EP. Conclusions: Although the number of patients entered into this trial was small, the low activity seen at 1 μg/ml in the 15d arm suggests that this concentration is below the therapeutic window in this setting. Further concentration- controlled studies with prolonged EP infusions are required.