736 resultados para bubble
Resumo:
Some of the factors that help to explain the Israeli success case on promoting high-tech start-ups backed by venture capital funds can be found in the risk-taking culture of the country, the vast technological know-how associated with the huge military development, the high offer of human intellectual capital due to the immigration processes, and finally also the FDI inflows, mainly from the United States. Even though, these factors would not have the same effects in the economy unless the right structures were founded by the public-private sectors partnerships for the high-tech industry development and the adaptation of the investment industry surpasses two of the deepest global financial crisis: the dot-com bubble in the 2000’s and the subprime in 2008
Resumo:
The main objective of this work was to mount and test an experimental model to measure the hydraulic conductance of ex vivo dentin. Seventeen healthy third molars, with indication of extraction of healthy donors aged between 15 and 30 years were obtained by informed consent. After cleaning them, disinfecting them, including them in resin epoxy and cutting them, there were 17 samples of dentin, corresponding to a disk of resin with a coronal section of tooth showing the dentin exposed on both sides of it. Three machines to measure the hydraulic conductance of the dentin were assembled according to the description of the model of Pashley. Samples were installed in a Chamber of diffusion, connected by using silicone tubes to a graduated transfer pipette and a 20cm water column. Through the displacement of a bubble of water in the inside of the pipette, the hydraulic conductance of each sample was measured 3 times on the 14th, 21st, 28th and 35th day post extraction. The data were tabulated and analyzed statistically. There is no SS difference in the rate of flow of a measured sample in the three machines (p=0.5937). There is no SS difference in measurements of the hydraulic conductance of 13 samples of human dentin measured in days 14, 21, 28 and 35 postextraction (p=0.0704). It is possible to mount an experimental model to study the hydraulic conductance of dentin ex vivo, based on the model of Pashley. The model seems to be reliable, but more research is needed in order to validate its reliability.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We present empirical evidence using daily data for stock prices for 17 real estate companies traded in the Sao Paulo, Brazil stock exchange. from August 26, 2006 to March 31, 2010. We use the U.S. house price bubble, financial crisis and risk measures to instrument for momentums and reversals in the domestic real estate sector. We find evidence of conditional premium persistence and conditional volatility persistence in the market. We find that the conditional risk-return relationship in the sector is consistent with the prospect theory of risk attitudes in this period. Certain companies seem to be operating on a perceived potential industry return above the target, while most others are below the target, and the whole sector is below target on average. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In accelerating dark energy models, the estimates of the Hubble constant, Ho, from Sunyaev-Zerdovich effect (SZE) and X-ray surface brightness of galaxy clusters may depend on the matter content (Omega(M)), the curvature (Omega(K)) and the equation of state parameter GO. In this article, by using a sample of 25 angular diameter distances of galaxy clusters described by the elliptical beta model obtained through the SZE/X-ray technique, we constrain Ho in the framework of a general ACDM model (arbitrary curvature) and a flat XCDM model with a constant equation of state parameter omega = p(x)/rho(x). In order to avoid the use of priors in the cosmological parameters, we apply a joint analysis involving the baryon acoustic oscillations (BA()) and the (MB Shift Parameter signature. By taking into account the statistical and systematic errors of the SZE/X-ray technique we obtain for nonflat ACDM model H-0 = 74(-4.0)(+5.0) km s(-1) Mpc(-1) (1 sigma) whereas for a fiat universe with constant equation of state parameter we find H-0 = 72(-4.0)(+5.5) km s(-1) Mpc(-1)(1 sigma). By assuming that galaxy clusters are described by a spherical beta model these results change to H-0 = 6(-7.0)(+8.0) and H-0 = 59(-6.0)(+9.0) km s(-1) Mpc(-1)(1 sigma), respectively. The results from elliptical description are in good agreement with independent studies from the Hubble Space Telescope key project and recent estimates based on the Wilkinson Microwave Anisotropy Probe, thereby suggesting that the combination of these three independent phenomena provides an interesting method to constrain the Bubble constant. As an extra bonus, the adoption of the elliptical description is revealed to be a quite realistic assumption. Finally, by comparing these results with a recent determination for a, flat ACDM model using only the SZE/X-ray technique and BAO, we see that the geometry has a very weak influence on H-0 estimates for this combination of data.
Resumo:
Period adding cascades have been observed experimentally/numerically in the dynamics of neurons and pancreatic cells, lasers, electric circuits, chemical reactions, oceanic internal waves, and also in air bubbling. We show that the period adding cascades appearing in bubbling from a nozzle submerged in a viscous liquid can be reproduced by a simple model, based on some hydrodynamical principles, dealing with the time evolution of two variables, bubble position and pressure of the air chamber, through a system of differential equations with a rule of detachment based on force balance. The model further reduces to an iterating one-dimensional map giving the pressures at the detachments, where time between bubbles come out as an observable of the dynamics. The model has not only good agreement with experimental data, but is also able to predict the influence of the main parameters involved, like the length of the hose connecting the air supplier with the needle, the needle radius and the needle length. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3695345]
Resumo:
Removal of Mg from aluminum scraps, known as demagging, has been widely applied in the,aluminum industry. This work discusses bubble-formation theories and magnesium kinetic removal from aluminum scraps using chlorine and inert gas fluxing. The interfacial area of the bubbles and residence time were estimated using a mathematical model. To inject gaseous chlorine, three types of nozzles were used with varying internal diameter. In addition, a porous plug, as well as varying input chlorine flow and concentration were used. The use of lower chlorine concentration improves efficiency because the interfacial tension is reduced therefore, more and smaller bubbles are formed. The model proposed herein is consistent with the experimental data. [doi:10.2320/matertrans.M2011256]
Resumo:
O objetivo desse trabalho é apresentar e discutir a determinação dos parâmetros de dispersão de ar em células mecânicas de flotação, em circuitos industriais brasileiros. Foram investigados os circuitos rougher e scavenger das usinas RPM, Taquari-Vassouras, Copebras e Fosfértil-Catalão (atual Vale Fertilizantes). Nas usinas RPM e Taquari-Vassouras, foram determinados a velocidade superficial do ar (Jg), o hold-up do ar (εg), o diâmetro médio de bolhas (d32) e o fluxo de área superficial de bolhas (Sb). Para as outras usinas, foram determinados somente o Jg e εg. Os resultados mostraram que, com exceção da RPM, todos os circuitos investigados apresentaram baixos valores para os parâmetros de dispersão do ar. Taquari-Vassouras apresentou os mais baixos valores médios para Jg e εg, respectivamente, 0,05 cm/s e 5%. Os maiores valores de Jg foram determinados no circuito rougher da Copebras, 1,17 cm/s, ao passo que a RPM apresentou os maiores valores para o hold-up e tamanho de bolha, respectivamente, 31% e 2,61mm. Os valores obtidos, para Sb, situaram-se abaixo daqueles reportados na literatura.
Resumo:
The magnetic field in the local interstellar medium (ISM) provides a key indicator of the galactic environment of the Sun and influences the shape of the heliosphere. We have studied the interstellar magnetic field (ISMF) in the solar vicinity using polarized starlight for stars within 40 pc of the Sun and 90 degrees of the heliosphere nose. In Frisch et al. (Paper I), we developed a method for determining the local ISMF direction by finding the best match to a group of interstellar polarization position angles obtained toward nearby stars, based on the assumption that the polarization is parallel to the ISMF. In this paper, we extend the analysis by utilizing weighted fits to the position angles and by including new observations acquired for this study. We find that the local ISMF is pointed toward the galactic coordinates l, b = 47 degrees +/- 20 degrees, 25 degrees +/- 20 degrees. This direction is close to the direction of the ISMF that shapes the heliosphere, l, b = 33 degrees +/- 4 degrees, 55 degrees +/- 4 degrees, as traced by the center of the "Ribbon" of energetic neutral atoms discovered by the Interstellar Boundary Explorer (IBEX) mission. Both the magnetic field direction and the kinematics of the local ISM are consistent with a scenario where the local ISM is a fragment of the Loop I superbubble. A nearby ordered component of the local ISMF has been identified in the region l approximate to 0 degrees -> 80 degrees and b approximate to 0 degrees -> 30 degrees, where PlanetPol data show a distance-dependent increase of polarization strength. The ordered component extends to within 8 pc of the Sun and implies a weak curvature in the nearby ISMF of +/- 0 degrees.25 pc(-1). This conclusion is conditioned on the small sample of stars available for defining this rotation. Variations from the ordered component suggest a turbulent component of +/- 23 degrees. The ordered component and standard relations between polarization, color excess, and H-o column density predict a reasonable increase of N(H) with distance in the local ISM. The similarity of the ISMF directions traced by the polarizations, the IBEX Ribbon, and pulsars inside the Local Bubble in the third galactic quadrant suggest that the ISMF is relatively uniform over spatial scales of 8-200 pc and is more similar to interarm than spiral-arm magnetic fields. The ISMF direction from the polarization data is also consistent with small-scale spatial asymmetries detected in GeV-TeV cosmic rays with a galactic origin. The peculiar geometrical relation found earlier between the cosmic microwave background dipole moment, the heliosphere nose, and the ISMF direction is supported by this study. The interstellar radiation field at +/- 975 angstrom does not appear to play a role in grain alignment for the low-density ISM studied here.
Resumo:
The oil industry uses gas separators in production wells as the free gas present in the suction of the pump reduces the pumping efficiency and pump lifetime. Therefore, free gas is one of the most important variables in the design of pumping systems. However, in the literature there is little information on these separators. It is the case of the inverted-shroud gravitational gas separator. It has an annular geometry due to the installation of a cylindrical container in between the well casing and pioduction pipe (tubing). The purpose of the present study is to understand the phenomenology and behavior of inverted-shroud separator. Experimental tests were performed in a 10.5-m-length inclinable glass tube with air and water as working fluids. The water flow rate was in the range of 8.265-26.117 l/min and the average inlet air mass flow rate was 1.1041 kg/h, with inclination angles of 15 degrees, 30 degrees, 45 degrees, 60 degrees, 75 degrees, 80 degrees and 85 degrees. One of the findings is that the length between the inner annular level and production pipe inlet is one of the most important design parameters and based on that a new criterion for total gas separation is proposed. We also found that the phenomenology of the studied separator is not directly dependent on the gas flow rate, but on the average velocity of the free surface flow generated inside the separator. Maps of efficiency of gas separation were plotted and showed that liquid flow rate, inclination angle and pressure difference between casing and production pipe outlet are the main variables related to the gas separation phenomenon. The new data can be used for the development of design tools aiming to the optimized project of the pumping system for oil production in directional wells. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
O objetivo deste trabalho é compreender a etapa de ajuste no contexto da gestão do portfólio de projetos, destacando sua relação com os processos de categorização e balanceamento. A pesquisa realizada tem caráter qualitativo, sendo a abordagem adotada o estudo de caso longitudinal. A pesquisa foi desenvolvida em uma empresa do setor químico brasileiro. As evidências, de várias fontes, foram coletadas através de entrevistas, documentos e dados dos sistemas corporativos. Para a compreensão do portfólio de projetos da empresa foram coletados e analisados dados de mil projetos realizados entre 2001 e 2005. Os resultados indicam que maior atenção é dada à etapa de seleção, negligenciando a etapa de ajuste. A adoção de ferramentas de balanceamento permitiu evidenciar lacunas e fontes de desbalanceamento no portfólio de projetos, promovendo o debate entre os tomadores de decisão no que concerne ao viés introduzido pelos critérios adotados na etapa de seleção e levantando a necessidade de introdução de uma sistemática de ajuste e balanceamento. Observou-se que sem uma adequada categorização dos projetos da empresa seria difícil promover a análise de balanceamento.
Resumo:
It is shown that the generation of cavities in a liquid can produce usable work, which is illustrated by the stretching of a string. This work is done during the expansion of the cavity, and not with its collapse. Basic equations are presented for the movement of a device moved by the so called cavity events. A theoretical solution is also proposed, which uses polynomial functions relating the so called "excess of pressure" in the cavity and time. Evaluations of the force generated during the expansion of the cavity showed a mean peak value of about 58 N for the moving container, while measurements with the container fixed to a support showed a peak value of 476 N, considered somewhat overestimated, because high frequency oscillations seem to superpose the mean behavior. Simultaneous phenomena occurring during the cavity events are also described. Series of pictures of the experiments are presented.
Resumo:
Wave breaking is an important coastal process, influencing hydro-morphodynamic processes such as turbulence generation and wave energy dissipation, run-up on the beach and overtopping of coastal defence structures. During breaking, waves are complex mixtures of air and water (“white water”) whose properties affect velocity and pressure fields in the vicinity of the free surface and, depending on the breaker characteristics, different mechanisms for air entrainment are usually observed. Several laboratory experiments have been performed to investigate the role of air bubbles in the wave breaking process (Chanson & Cummings, 1994, among others) and in wave loading on vertical wall (Oumeraci et al., 2001; Peregrine et al., 2006, among others), showing that the air phase is not negligible since the turbulent energy dissipation involves air-water mixture. The recent advancement of numerical models has given valuable insights in the knowledge of wave transformation and interaction with coastal structures. Among these models, some solve the RANS equations coupled with a free-surface tracking algorithm and describe velocity, pressure, turbulence and vorticity fields (Lara et al. 2006 a-b, Clementi et al., 2007). The single-phase numerical model, in which the constitutive equations are solved only for the liquid phase, neglects effects induced by air movement and trapped air bubbles in water. Numerical approximations at the free surface may induce errors in predicting breaking point and wave height and moreover, entrapped air bubbles and water splash in air are not properly represented. The aim of the present thesis is to develop a new two-phase model called COBRAS2 (stands for Cornell Breaking waves And Structures 2 phases), that is the enhancement of the single-phase code COBRAS0, originally developed at Cornell University (Lin & Liu, 1998). In the first part of the work, both fluids are considered as incompressible, while the second part will treat air compressibility modelling. The mathematical formulation and the numerical resolution of the governing equations of COBRAS2 are derived and some model-experiment comparisons are shown. In particular, validation tests are performed in order to prove model stability and accuracy. The simulation of the rising of a large air bubble in an otherwise quiescent water pool reveals the model capability to reproduce the process physics in a realistic way. Analytical solutions for stationary and internal waves are compared with corresponding numerical results, in order to test processes involving wide range of density difference. Waves induced by dam-break in different scenarios (on dry and wet beds, as well as on a ramp) are studied, focusing on the role of air as the medium in which the water wave propagates and on the numerical representation of bubble dynamics. Simulations of solitary and regular waves, characterized by both spilling and plunging breakers, are analyzed with comparisons with experimental data and other numerical model in order to investigate air influence on wave breaking mechanisms and underline model capability and accuracy. Finally, modelling of air compressibility is included in the new developed model and is validated, revealing an accurate reproduction of processes. Some preliminary tests on wave impact on vertical walls are performed: since air flow modelling allows to have a more realistic reproduction of breaking wave propagation, the dependence of wave breaker shapes and aeration characteristics on impact pressure values is studied and, on the basis of a qualitative comparison with experimental observations, the numerical simulations achieve good results.
Resumo:
Polymer blends constitute a valuable way to produce relatively low cost new materials. A still open question concerns the miscibility of polyethylene blends. Deviations from the log-additivity rule of the newtonian viscosity are often taken as a signature of immiscibility of the two components. The aim of this thesis is to characterize the rheological behavior in shear and elongation of five series of LLDPE/LDPE blends whose parent polymers have been chosen with different viscosity and SCB content and length. Synergistic effects have been measured for both zero shear viscosity and melt strength. Both SCB length and viscosity ratio between the components have been found to be key parameters for the miscibility of the pure polymers. In particular the miscibility increases with increasing SCB length and with decreasing the LDPE molecular weight and viscosity. This rheological behavior has significant effects on the processability window of these blends when the uni or biaxial elongational flows are involved. The film blowing is one of the processes for which the synergistic effects above mentioned can be crucial. Small scale experiments of film blowing performed for one of the series of blends has demonstrated that the positive deviation of the melt strength enlarges the processability window. In particular, the bubble stability was found to improve or disappear when the melt strength of the samples increased. The blending of LDPE and LLDPE can even reduce undesired melt flow instability phenomena widening, as a consequence, the processability window in extrusion. One of the series of blends has been characterized by means of capillary rheometry in order to allow a careful morphological analysis of the surface of the extruded polymer jets by means of Scanning Electron Microscopy (SEM) with the aim to detect the very early stages of the small scale melt instabilty at low shear rates (sharksin) and to follow its subsequent evolution as long as the shear rate was increased. With this experimental procedure it was possible to evaluate the shear rate ranges corresponding to different flow regions: smooth extrudate surface (absence of instability), sharkskin (small scale instability produced at the capillary exit), stick-slip transition (instability involving the whole capillary wall) and gross melt fracture (i.e. a large scale "upstream" instability originating from the entrance region of the capillary). A quantitative map was finally worked out using which an assessment of the flow type for a given shear rate and blend composition can be predicted.