968 resultados para brain size
Resumo:
The aim of this study is to obtain the fracture characteristics of low and medium compressive strength self consolidating concrete (SCC) for notched and un-notched plain concrete beams by using work of fracture G(F) and size effect model G(f) methods and comparing them with those of normal concrete and high performance concrete. The results show that; (i) with an increase in compressive strength, G(F) increases and G(f) decreases; (ii) with an increase in depth of beam, the decrease in nominal stress of notched beam is more when compared with that of a notchless beam.
Resumo:
We report on the size-dependent melting of nanowires with finite length based on the thermodynamic as well as liquid drop model. It has been inferred that the length dependency cannot be ignored, unlike the case of infinite length nanowires. To validate the length dependency, we have analyzed a few experimental results reported in the literature.
Resumo:
Modern-day economics is increasingly biased towards believing that institutions matter for growth, an argument that has been further enforced by the recent economic crisis. There is also a wide consensus on what these growth-promoting institutions should look like, and countries are periodically ranked depending on how their institutional structure compares with the best-practice institutions, mostly in place in the developing world. In this paper, it is argued that ”non-desirable” or “second-best” institutions can be beneficial for fostering investment and thus providing a starting point for sustained growth, and that what matters is the appropriateness of institutions to the economy’s distance to the frontier or current phase of development. Anecdotal evidence from Japan and South-Korea is used as a motivation for studying the subject and a model is presented to describe this phenomenon. In the model, the rigidity or non-rigidity of the institutions is described by entrepreneurial selection. It is assumed that entrepreneurs are the ones taking part in the imitation and innovation of technologies, and that decisions on whether or not their projects are refinanced comes from capitalists. The capitalists in turn have no entrepreneurial skills and act merely as financers of projects. The model has two periods, and two kinds of entrepreneurs: those with high skills and those with low skills. The society’s choice of whether an imitation or innovation – based strategy is chosen is modeled as the trade-off between refinancing a low-skill entrepreneur or investing in the selection of the entrepreneurs resulting in a larger fraction of high-skill entrepreneurs with the ability to innovate but less total investment. Finally, a real-world example from India is presented as an initial attempt to test the theory. The data from the example is not included in this paper. It is noted that the model may be lacking explanatory power due to difficulties in testing the predictions, but that this should not be seen as a reason to disregard the theory – the solution might lie in developing better tools, not better just better theories. The conclusion presented is that institutions do matter. There is no one-size-fits-all-solution when it comes to institutional arrangements in different countries, and developing countries should be given space to develop their own institutional structures that cater to their specific needs.
Resumo:
Oxidation of NADH by rat brain microsomes was stimulated severalfold on addition of vanadate. During the reaction, vanadate was reduced, oxygen was consumed, and H2O2 was generated with a stoichiometry of 1:1 for NADH/O2, as in the case of other membranes. Extra oxygen was found to be consumed over that needed for H2O2 generation specifically when brain microsomes were used. This appears to be due to the peroxidation of lipids known to be accompanied by a large consumption of oxygen. Occurrence of lipid peroxidation in brain microsomes in the presence of NADH and vanadate has been demonstrated. This activity was obtained specifically with the polymeric form of vanadate and with NADH, and was inhibited by the divalent cations Cu2+, Mn2+, and Ca2+, by dihydroxy-phenolic compounds, and by hemin in a concentration-dependent fashion. In the presence of a small concentration of vanadate, addition of an increasing concentration of Fe2+ gave increasing lipid peroxidation. After undergoing lipid peroxidation in the presence of NADH and vanadate, the binding of quinuclidinyl benzylate, a muscarinic antagonist, to brain membranes was decreased.
Resumo:
In this study we present approximate analytical expressions for estimating the variation in multipole expansion coefficients as a function of the size of the apertures in the electrodes in axially symmetric (3D) and two-dimensional (2D) ion trap ion traps. Following the approach adopted in our earlier studies which focused on the role of apertures to fields within the traps, here too, the analytical expression we develop is a sum of two terms, A(n,noAperiure), the multipole expansion coefficient for a trap with no apertures and A(n,dueToAperture), the multipole expansion coefficient contributed by the aperture. A(n,noAperture) has been obtained numerically and A(n,dueToAperture) is obtained from the n th derivative of the potential within the trap. The expressions derived have been tested on two 3D geometries and two 2D geometries. These include the quadrupole ion trap (QIT) and the cylindrical ion trap (CIT) for 3D geometries and the linear ion trap (LIT) and the rectilinear ion trap (RIT) for the 2D geometries. Multipole expansion coefficients A(2) to A(12), estimated by our analytical expressions, were compared with the values obtained numerically (using the boundary element method) for aperture sizes varying up to 50% of the trap dimension. In all the plots presented, it is observed that our analytical expression for the variation of multipole expansion coefficients versus aperture size closely follows the trend of the numerical evaluations for the range of aperture sizes considered. The maximum relative percentage errors, which provide an estimate of the deviation of our values from those obtained numerically for each multipole expansion coefficient, are seen to be largely in the range of 10-15%. The leading multipole expansion coefficient, A(2), however, is seen to be estimated very well by our expressions, with most values being within 1% of the numerically determined values, with larger deviations seen for the QIT and the LIT for large aperture sizes. (C) 2010 Elsevier B.V. All rights reserved.
Effect of undernutrition on the metabolism of phospholipids and gangliosides in developing rat brain
Resumo:
1. Phospholipid content of brains of 3- or 8-week-old undernourished rats was 7--9% less than that for the corresponding control animals and this deficit could not be made up by rehabilitation. Phosphatidyl ethanolamine and plasmalogen were the components most affected in brains of undernourished rats. 2. Incorporation of 32P into phospholipids by brain homogenates was 28% higher in 3-week-old undernourished rats. It is suggested that enhanced phospholipid metabolism in undernourished animals may be related to behavioural alterations noted previously (Sobotka, Cook & Brodie, 1974). 3. Ganglioside concentrations in 3- and 8-week-old undernourished animals were 14% and 11.5% less respectively than those of the control animals and this difference could be made up by rehabilitation. [14C]Glucosamine incorporation in vivo into brain gangliosides was not affected by undernutrition.
Resumo:
The structural changes occurring during warm working of Cd-1.5 pct Zn alloy and their effect on the subsequent mechanical properties are studied. It is observed that changes in grain size and preferred orientation are important to a large extent in controlling the mechanical strength. The Hall-Petch slope,R decreases in the warm worked material while the friction stress, σo increases. The lowerR values are attributed to the development of a (101l) texture and the higher σo values are interpreted on the basis of changes in the basal texture.
Resumo:
Introduction Dicalcium strontium propionate (DCSP) undergoes a ferroelectric phase transition at about 28 1.5 K, with the spontaneous polarization occurring along the tetragonal C-axis.1 Takashige et al.2,3 have recently reported ferroelectricity in annealed samples of dicalcium lead propionate (DCLP) in the range 191 K to 331 K. The removal of the inner biasing field by annealing has been known in the case of DCLP3 and DCSP.4 Because of the possible dependence of the inner biasing field on the particle size, a study of the temperature dependence of the dielectric behaviour of the powdered samples of these compounds was undertaken.
Resumo:
Phenyl and phenolic acids are known to inhibit metabolism of mevalonate in rat brain. The site of inhibition has been found to be mevalonate-5-pyrophosphate decarboxylase. Phenolic acids also inhibited mevalonate-5-phosphate kinase on preincubation. The kinetics showed that p-coumaric acid and isoferulic acid were competing with substrates, mevalonate-5-phosphate or mevalonate-5-pyre phosphate, whereas others showed an uncompetitive type of inhibition. Chlorophenoxyisobutyrate, a hypocholesterolaemic drug, had no effect on these enzymes. An improved method for the synthesis of mevalonate-5-phosphate and mevalonate-5-pyrophosphate, labeled at carbon-1, is described.
Resumo:
QSPR-malli kuvaa kvantitatiivista riippuvuutta muuttujien ja biologisen ominaisuuden välillä. Näin ollen QSPR mallit ovat käyttökelpoisia lääkekehityksen apuvälineitä. Kirjallisessa osassa kerrotaan sarveiskalvon, suoliston ja veriaivoesteen permeabiliteetin malleista. Useimmin käytettyjä muuttujia ovat yhdisteen rasvaliukoisuus, polaarinen pinta-ala, vetysidosten muodostuminen ja varaus. Myös yhdisteen koko vaikuttaa läpäisevyyteen, vaikka tutkimuksissa onkin erilaista tietoa tämän merkittävyydestä. Malliin vaikuttaa myös muiden kuin mallissa mukana olevien muuttujien suuruusluokka esimerkkinä Lipinskin ‖rule of 5‖ luokittelu. Tässä luokittelussa yhdisteen ominaisuus ei saa ylittää tiettyjä raja-arvoja. Muussa tapauksessa sen imeytyminen suun kautta otettuna todennäköisesti vaarantuu. Lisäksi kirjallisessa osassa tutustuttiin kuljetinproteiineihin ja niiden toimintaan silmän sarveiskalvossa, suolistossa ja veriaivoesteessä. Nykyisin on kehitetty erilaisia QSAR-malleja kuljetinproteiineille ennustamaan mahdollisten substraatittien tai inhibiittorien vuorovaikutuksia kuljetinproteiinin kanssa. Kokeellisen osan tarkoitus oli rakentaa in silico -malli sarveiskalvon passiiviselle permeabiliteetille. Työssä tehtiin QSPR-malli 54 yhdisteen ACDLabs-ohjelmalla laskettujen muuttujien arvojen avulla. Permeabiliteettikertoimien arvot saatiin kirjallisuudesta kanin sarveiskalvon läpäisevyystutkimuksista. Lopullisen mallin muuttujina käytettiin oktanoli-vesijakaantumiskerrointa (logD) pH:ssa 7,4 ja vetysidosatomien kokonaismäärää. Yhtälö oli muotoa log10(permeabiliteettikerroin) = -3,96791 - 0,177842Htotal + 0,311963logD(pH7,4). R2-korrelaatiokerroin oli 0,77 ja Q2-korrelaatiokerroin oli 0,75. Lopullisen mallin hyvyyttä arvioitiin 15 yhdisteen ulkoisella testijoukolla, jolloin ennustettua permeabiliteettia verrattiin kokeelliseen permeabiliteettiin. QSPR-malli arvioitiin myös farmakokineettisen simulaation avulla. Simulaatiossa laskettiin seitsemän yhdisteen kammionestepitoisuudet in vivo vakaassa tilassa käyttäen simulaatioissa QSPR mallilla ennustettuja permeabiliteettikertoimia. Lisäksi laskettiin sarveiskalvon imeytymisen nopeusvakio (Kc) 13 yhdisteelle farmakokineettisen simulaation avulla ja verrattiin tätä lopullisella mallilla ennustettuun permeabiliteettiin. Tulosten perusteella saatiin tilastollisesti hyvä QSPR-malli kuvaamaan sarveiskalvon passiivista permeabiliteettia, jolloin tätä mallia voidaan käyttää lääkekehityksen alkuvaiheessa. QSPR-malli ennusti permeabiliteettikertoimet hyvin, mikä nähtiin vertaamalla mallilla ennustettuja arvoja kokeellisiin tuloksiin. Lisäksi yhdisteiden kammionestepitoisuudet voitiin simuloida käyttäen apuna QSPR-mallilla ennustettuja permeabiliteettikertoimien arvoja.