991 resultados para bone matrix
Resumo:
To better understand the role of nitric oxide (NO) in mammal development, specifically in the transition of the fetal stages at birth, we studied the timing of cell-specific expression of inducible NO synthase (iNOS) isoform during gestational periods of rats, mainly at the late stages of intra-uterine development. Before experimentation, the samples were collected (from 17th to 21st gestational days), fixed in 10% buffered formalin and embedded in paraffin for histological procedures. Hereafter, the sections (5 mu m thickness) obtained from different embryos were immunostained by avidin-biotin-immunoperoxidase technique, by using antibody against iNOS isoform. The most of cell immunopositive was suggestive of granulocyte-like cells and those cells were resident close to the blood vessels in different organs, such as: lung, liver or bone marrow environment. Sometimes we noted immunopositive cells in the blood flow, as reported in the thymus. In agreement, iNOS expression, obtained by western blotting analysis, showed the same profile. Together, our data shows that iNOS expression increased gradually during the late stages of rat development (from E17 to E21) and it was executed by cells close to blood vessels. Thus, we can clearly to predict that this expression was finely modulated and it contributes for time-line dependent NO production during rat late development.
Resumo:
Fibrous dysplasia is a benign fibro-osseous disease that affects one or more bones. Although its etiology has been defined, the mechanism of spontaneous resolution is still unclear. There is strong evidence indicating the occurrence of stabilization when bone maturation is completed. Deformities that lead to esthetic and functional disorders are observed in almost all cases. Plastic surgery is often recommended when the maxilla and mandible are involved. In the case of mild deformities, careful follow-up during skeletal growth is recommended. We describe here the 23-year follow-up of a patient with monostotic fibrous dysplasia whose disease had stabilized by 13 years of follow-up. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 107: 229-234)
Resumo:
Objective. To investigate the expression of bone resorption regulators (receptor activator of nuclear factor kappa B [RANK], RANK ligand [RANKL], and osteoprotegerin [OPG]) in calcifying cystic odontogenic tumor (CCOT), adenomatoid odontogenic tumor (AOT), calcifying epithelial odontogenic tumor (CEOT), odontogenic myxoma (OM), and ameloblastic fibroma (AF). Study design. The expression of these mediators was evaluated by means of immunohistochemistry. Results. All specimens demonstrated positive immunoreactivity to RANK, RANKL, and OPG. The quantification of these mediators in epithelium revealed a similar pattern of expression for RANKL and OPG in CCOT, AOT, CEOT, and AF. With regard to stromal/mesenchymal cells, the majority of AOT and CCOT cases showed a higher content of OPG than RANKL, whereas CEOT, OM, and especially AF had a tendency to present a greater content of RANKL than OPG. Conclusion. Our data indicate that the CCOT, AOT, CEOT, OM, and AF cell constituents express key regulators of bone metabolism that might locally modulate tumor-associated bone resorption. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;106:548-55)
Resumo:
This study evaluated the biomechanical and microscopic response of previously grafted bone to titanium implants. The lower incisors of 16 rabbits were surgically extracted, and bilateral perforations communicating with the remaining sockets were created distally. A socket/perforation defect on each mandible was chosen at random to be immediately filled with a xenogenic graft, whereas the contralateral perforation was left to heal naturally and served as a paired control. After 60 days, titanium implants were installed in the previously operated areas. After periods of 2 and 6 months, the animals were killed, and the force necessary to retrieve implants as well as the bone-implant contact (BIC) and bone mass (BM) were quantified and statistically compared by 2-way analysis of variance and Tukey`s test (alpha = .05). No significant differences in removal torque were observed, either by time or by treatment condition. Differences in BIC and BM between experimental and control groups were not statistically significant through the intervals studied (P < .05). The presence of a xenogenic graft did not influence the microscopic tissue response to titanium implants or fixation into newly formed or mature bone.
Resumo:
Background: Periodontal wound healing and regeneration require that new matrix be synthesized, creating an environment into which cells can migrate. One agent which has been described as promoting periodontal regeneration is an enamel matrix protein derivative (EMD). Since no specific growth factors have been identified in EMD preparations, it is postulated that EMD acts as a matrix enhancement factor. This study was designed to investigate the effect of EMD in vitro on matrix synthesis by cultured periodontal fibroblasts. Methods: The matrix response of the cells was evaluated by determination of the total proteoglycan synthesis, glycosaminoglycan profile, and hyaluronan synthesis by the uptake of radiolabeled precursors. The response of the individual proteoglycans, versican, decorin, and biglycan were examined at the mRNA level by Northern blot analysis. Hyaluronan synthesis was probed by identifying the isotypes of hyaluronan synthase (HAS) expressed in periodontal fibroblasts as HAS-2 and HAS-3 and the effect of EMD on the levels of mRNA for each enzyme was monitored by reverse transcription polymerase chain reaction (RTPCR). Comparisons were made between gingival fibroblast (GF) cells and periodontal ligament (PDLF) cells. Results: EMD was found to significantly affect the synthesis of the mRNAs for the matrix proteoglycans versican, biglycan, and decorin, producing a response similar to, but potentially greater than, mitogenic cytokines. EMD also stimulated hyaluronan synthesis in both GF and PDLF cells. Although mRNA for HAS-2 was elevated in GF after exposure to EMD, the PDLF did not show a similar response. Therefore, the point at which the stimulation of hyaluronan becomes effective may not be at the level of stimulation of the mRNA for hyaluronan synthase, but, rather, at a later point in the pathway of regulation of hyaluronan synthesis. In all cases, GF cells appeared to be more responsive to EMD than PDLF cells in vitro. Conclusions: EMD has the potential to significantly modulate matrix synthesis in a manner consistent with early regenerative events.
Resumo:
Background: Oral lichen planus (OLP) is characterized by a subepithelial lymphocytic infiltrate, basement membrane (BM) disruption, intra-epithelial T-cell migration and apoptosis of basal keratinocytes. BM damage and T-cell migration in OLP may be mediated by matrix metalloproteinases (MMPs). Methods: We examined the distribution, activation and cellular sources of MMPs and their inhibitors (TIMPs) in OLP using immunohistochemistry, ELISA, RT-PCR and zymography. Results: MMP-2 and -3 were present in the epithelium while MMP-9 was associated with the inflammatory infiltrate. MMP-9 and TIMP-1 secretion by OLP lesional T cells was greater than OLP patient (p
Resumo:
Large bone defects represent major clinical problems in the practice of reconstructive orthopedic and craniofacial surgery. The aim of this study was to examine, through immunohistochemistry approach, the involvement of MMP-9 and CD68(+) cells during tissue remodeling in response to natural hydroxyapatite (HA) implanted in rat subcutaneous tissue. Before experimentation, forty animals were randomly distributed into two experimental groups: Group-I (Gen-Ox (TM) micro-granules) and Group-II (Gen-Ox (TM) macro-granules). Afterwards, the biopsies were collected after 10, 20, 30, and 60 days post-implantation. Our results showed that at 10 days, a low-renewal foreign body type granuloma formation was observed in most of the cases. Macrophage- and fibroblast-like cells were the predominant type of cells positively stained for MMP-9 in both groups. Once macrophage-like cells seemed to be the major source of MMP9, antibody against pan-CD68 epitope was used to correlate these findings. In agreement, MMP-9 and CD68(+) cells were distributed at the periphery and the central region of the granuloma in all experimental periods, however no staining was observed in cell contacting to material. Besides macrophages, the lysosomal glycoprotein epitope recognized by CD68 antibodies can be expressed by mast cell granules and sometimes by fibroblasts. Taken together, our results suggest that xenogenic HA promotes extracellular matrix remodeling through induction of MMP-9 activity and presence of CD68(+) cells.
Resumo:
The bone formation executed by osteoblasts represents an interesting research field both for basic and applied investigations. The goal of this work was to evaluate the molecular mechanisms involved during osteoblast differentiation in vitro. Accordingly, we demonstrated that, during the osteoblastic differentiation, TIMP-2 and RECK presented differential expressions, where RECK expression was downregulated from the 14th day in contrast with an increase in TIMP-2. Concomitantly, our results showed a temporal regulation of two major signaling cascades during osteoblast differentiation: proliferation cascades in which RECK, PI3 K, and GSK-3 beta play a pivotal role and latter, differentiation cascades with participation of Ras, Rho, Rac-1, PKC alpha/beta, and TIMP-2. Furthermore, we observed that phosphorylation level of paxillin was downregulated while FAK(125) remained unchangeable, but active during extracellular matrix (ECM) remodeling. Concluding, our results provide evidences that RECK and TIMP-2 are involved in the control of ECM remodeling in distinct phases of osteoblast differentiation by modulating MMP activities and a multitude of signaling proteins governs these events.
Resumo:
Purpose: To evaluate the biomechanical fixation, bone-to-implant contact (BIC), and bone morphology of screw-type root-form implants with healing chambers with as-machined or dual acid-etched (DAE) surfaces in a canine model. Materials and Methods: The animal model included the placement of machined (n = 24) and DAE (n = 24) implants along the proximal tibiae of six mongrel dogs, which remained in place for 2 or 4 weeks. Following euthanasia, half of the specimens were subjected to biomechanical testing (torque to interface failure) and the other half were processed for histomorphologic and histomorphometric (%BIC) assessments. Statistical analyses were performed by one-way analysis of variance at the 95% confidence level and the Tukey post hoc test for multiple comparisons. Results: At 4 weeks, the DAE surface presented significantly higher mean values for torque to interface failure overall. A significant increase in %BIC values occurred for both groups over time. For both groups, bone formation through the classic appositional healing pathway was observed in regions where intimate contact between the implant and the osteotomy walls occurred immediately after implantation. Where contact-free spaces existed after implantation (healing chambers), an intramembranous-like healing mode with newly formed woven bone prevailed. Conclusions: In the present short-term evaluation, no differences were observed in BIC between groups; however, an increase in biomechanical fixation was seen from 2 to 4 weeks with the DAE surface. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:75-82
Resumo:
Background: Vascular endothelial growth factor (VEGF) is a macromolecule of importance in inflammation that has been implicated in periodontitis. The aims of this study were to investigate VEGF expression during the progression of periodontal disease and to evaluate the effect of a preferential cyclooxygenase (COX)-2 inhibitor meloxicam on VEGF expression and alveolar bone loss in experimentally induced periodontitis. Methods: A total of 120 Wistar rats were randomly separated into groups 1 (control) and 2 (meloxicam, 3 mg/kg/day, intraperitoneally, for 3, 7, 14, or 30 days). Silk ligatures were placed at the gingival margin level of the lower right first molar of all rats. VEGF expression was assessed by reverse transcription-polymerase chain reaction (RT-PCR), Western blot (WB), and immunohistochemical (IHC) analyses. The hemiarcades were processed for histopathologic analysis. RT-PCR and WB results were submitted to analysis of variance, the Tukey test, and Pearson correlation analysis (P<0.05). Results: A reduction in alveolar bone resorption was observed in the meloxicam-treated group compared to the control group at all periods studied. There was a positive correlation between COX-2 mRNA and VEGF mRNA in the gingival tissues and periodontal disease (R = 0.80; P = 0.026). Meloxicam significantly reduced the increased mRNA VEGF expression in diseased tissues after 14 days of treatment (P = 0.023). Some alterations in VEGF receptor I mRNA expression were observed, but these were not statistically significant. VEGF protein expression in WB experiments was significantly higher in diseased sites compared to healthy sites (P<0.05). After 14 days of treatment with meloxicam, an important decrease in VEGF protein expression was detected in diseased tissues (P = 0.08). Qualitative IHC analysis revealed that VEGF protein expression was higher in diseased tissues and decreased in tissues from rats treated with meloxicam. Conclusions: The present data suggest an important role for VEGF in the progression of periodontal disease. Systemic therapy with meloxicam can modify the progression of experimentally induced periodontitis in rats by reducing VEGF expression and alveolar bone loss.
Resumo:
Purpose: The present study investigated osteointegration of autogenous bone (AB) from calvaria graft associated with osteoblastic cells (OC) in bone defects in rats subjected to daily administration of caffeine. Materials and Methods: Male rats received daily intraperitoneal injection of 1.5% caffeine (0.2 mL/100 g body weight) or saline solution for 30 days. Then they were anesthetized, submitted to the extraction of the upper right incisor, and implanted with AB only and AB + OC. The animals were killed on 7th, 21st, and 42nd days after surgery, and their maxilla were processed for obtaining semiserial sections (5 mu m) stained with hematoxylin and eosin. Through image analysis system, the bone volume and the quality of graft in adjacent areas were estimated. Results: The results showed that in caffeine treatment, the AB + OC graft showed no foreign body and acute inflammatory reactions inside the defect when compared to AB. The histometric results revealed that the association AB + OC produced significant increase (10%-15%) in bone volume in later experimental period (42 days) when compared with saline solution group (P <= 0.01). Conclusions: It was concluded that the association of AB from calvaria + OC demonstrated progressive osteointegration and accelerated the repair of bone defects in animals treated with daily caffeine. (Implant Dent 2011;20:369-373)
Resumo:
The aim of this study was to evaluate the response of osteoblastic cells to the composite of Ricinus cominunis polyurethane (RCP) and alkaline phosphatase (ALP) incubated in synthetic body fluid (SBF). RCP pure (RCPp) and RCP blended with ALP 6 mg/mL polymer (RCP+ALP) were incubated in SBF for 17 days. Four groups of RCP were tested: RCPp, RCP+ALP, and RCPp and RCP+ALP incubated in SBF (RCPp/SBF and RCP+ALP/SBF). Stem cells from rat bone marrow were cultured in conditions that allowed osteoblastic differentiation on RCP discs and were evaluated: cell adhesion, culture growth, cell viability, total protein content, ALP activity, and bone-like nodule formation. Data were compared by ANOVA or Kruskal-Wallis test. The group RCP-A P was highly cytotoxic and, therefore, was not considered here. Cell adhesion (p = 0.14), culture growth (p = 0.39), viability (p = 0.46) and total protein content (p = 0.12) were not affected by either RCP composition or incubation in SBE ALP activity was affected (p = 0.0001) as follows: RCPp < RCPp/SBF < RCP+ALP/SBF. Bone-like nodule formation was not observed on all evaluated groups. The composite RCP+ALP prior to SBF incubation is cytotoxic and must not be considered as biomaterial, but the incorporation of ALP to the RCP followed by SBF incubation could be a useful alternative to improve the biological properties of the RCP. (c) 2007 Wiley Periodicals, Inc.
Resumo:
Background: Matrix metalloproteinase-9 (MMP-9) is involved in the degradation of the extracellular matrix during physiological and pathological processes. Two functional polymorphisms [C(-1562)T and microsatellite (CA)(13-25)] in the promoter region of the MMP-9 gene have been associated with several diseases. The aim of this study was to examine whether these MMP-9 polymorphisms and haplotypes are linked with plasma MMP-9 variations in healthy subjects. Methods: We studied 177 healthy male white volunteers (age range 20-55 years) who were non-smokers and not taking any medication. Genomic DNA was extracted from whole blood and genotypes for the C(-1562)T and the microsatellite (CA)(n) polymorphisms were determined. MMP-9 levels were measured in plasma samples by gelatin zymography. Results: The frequency of the alleles C and T for the C(-1562)T polymorphism were 90% and 10%, respectively. The frequency of the alleles with less than 21 CA repeats Q and with 21 repeats or higher (H) were 47% and 53%, respectively. We found no differences in plasma MMP-9 levels among the genotype groups or among different haplotypes (all p > 0.05). Conclusions: These findings suggest that functional polymorphisms in the promoter of the MMP-9 gene are not linked with significant plasma MMP-9 variations in healthy subjects.
Resumo:
BACKGROUND AND PURPOSE Mounting evidence implicates matrix metalloproteinase (MMP) in the vascular dysfunction and remodelling associated with hypertension. We tested the hypothesis that treatment with pyrrolidine dithiocarbamate (PDTC), which interferes with NF-kappa B-induced MMPs gene transcription, could exert antihypertensive effects, prevent MMP-2 and MMP-9 up-regulation, and protect against the functional alterations and vascular remodelling of two-kidney, one clip (2K1C) hypertension. EXPERIMENTAL APPROACH Sham-operated or hypertensive rats were treated with vehicle or PDTC (100 mg.Kg(-1).day(-1)) by gavage for 8 weeks. Systolic blood pressure (SBP) was monitored weekly. Aortic rings were isolated to assess endothelium-dependent relaxations. Quantitative morphometry of structural alterations of the aortic wall was carried out in haematoxylin/eosin sections. Formation of vascular reactive oxygen species (ROS), and inducible (i) NOS and phosphorylated-p65 NF-kappa B subunit expression were measured in the aortas. MMP-2 and MMP-9 aortic levels and gelatinolytic activity were determined by gelatin and in situ zymography and by immunofluorescence. KEY RESULTS Treatment with PDTC attenuated the increases in SBP and prevented the endothelial dysfunction associated with 2K1C hypertension. Moreover, PDTC reversed the vascular aortic remodelling, the increases in aortic ROS levels and in iNOS and phosphorylated-p65 NF-kappa B expression found in 2K1C rats. These effects were associated with attenuation of 2K1C up-regulation of aortic MMP-2 and MMP-9 levels and gelatinolytic activity. CONCLUSION AND IMPLICATIONS These findings suggest that PDTC down-regulates vascular MMPs and ameliorates vascular dysfunction and remodelling in renovascular hypertension, thus providing evidence supporting the suggestion that PDTC is probably a good candidate to be used to treat hypertension.
Resumo:
This study investigated the response of human alveolar bone-derived cells to a novel poly(vinylidene fluoride-trifluoroethylene)/barium titanate (P(VDF-TrFE)/BT) membrane. Osteoblastic cells were cultured in osteogenic conditions either on P(VDF-TrFE)/BT or polytetrafluoroethylene (PTFE) for up to 14 days. At 7 and 14 days, the mRNA expression of Runt-related transcription factor 2 (RUNX2), Type I collagen (COL I), Osteopontin (OPN), Alkaline phosphatase (ALP), Bone sialoprotein (BSP), and Osteocalcin (OC), key markers of the osteoblastic phenotype, and of Bcl2-associated X protein (Bax), B-cell CLL/lymphoma 2 (Bcl-2), and Survivin (SUR), associated with the control of the apoptotic cell death, was assayed by real-time PCR. In situ ALP activity was qualitatively evaluated by means of Fast red staining. Surface characterization was also qualitatively and quantitatively assayed in terms of topography, roughness, and wettability. Cells grown on P(VDF-TrFE)/BT exhibited a significantly higher mRNA expression for all markers compared to the ones on PTFE, except for Bcl-2, which was not detected for both groups. Additionally, Fast red staining was noticeably stronger in cultures on P(VDF-TrFE)/BT at 7 and 14 days. At micron-and submicron scale, SEM images and roughness analysis revealed that PTFE and P(VDF-TrFE)/BT exhibited a smooth topography and a similar roughness, respectively. PTFE membrane displayed higher contact angles compared with P(VDF-TrFE)/BT, as indicated by wettability assay. The novel P(VDF-TrFE)/BT membrane supports the acquisition of the osteoblastic phenotype in vitro, while up-regulating the expression of apoptotic markers. Further in vivo experiments should be carried out to confirm the capacity of P(VDF-TrFE)/BT membrane in promoting bone formation in guided bone regeneration.