941 resultados para bivalent metal ions
Resumo:
The preparations, X-ray structures, and magnetic characterizations are presented for two new pentadecanuclear cluster compounds: [NiII{NiII(MeOH)3}8(μ-CN)30{MV(CN)3}6]·xMeOH·yH2O (MV = MoV (1) with x = 17, y = 1; MV = WV (2) with x = 15, y = 0). Both compounds crystallize in the monoclinic space group C2/c, with cell dimensions of a = 28.4957(18) Å, b = 19.2583(10) Å, c = 32.4279(17) Å, β = 113.155(6)°, and Z = 4 for 1 and a = 28.5278(16) Å, b = 19.2008(18) Å, c = 32.4072(17) Å, β = 113.727(6)°, and Z = 4 for 2. The structures of 1 and 2 consist of neutral cluster complexes comprising 15 metal ions, 9 NiII and 6 MV, all linked by μ-cyano ligands. Magnetic susceptibilities and magnetization measurements of compounds 1 and 2 in the crystalline and dissolved state indicate that these clusters have a S = 12 ground state, originating from intracluster ferromagnetic exchange interactions between the μ-cyano-bridged metal ions of the type NiII−NC−MV. Indeed, these data show clearly that the cluster molecules stay intact in solution. Ac magnetic susceptibility measurements reveal that the cluster compounds exhibit magnetic susceptibility relaxation phenomena at low temperatures since, with nonzero dc fields, χ‘ ‘M has a nonzero value that is frequency dependent. However, there appears no out-of-phase (χ‘ ‘M) signal in zero dc field down to 1.8 K, which excludes the expected signature for a single molecule magnet. This finding is confirmed with the small uniaxial magnetic anisotropy value for D of 0.015 cm-1, deduced from the high-field, high-frequency EPR measurement, which distinctly reveals a positive sign in D. Obviously, the overall magnetic anisotropy of the compounds is too low, and this may be a consequence of a small single ion magnetic anisotropy combined with the highly symmetric arrangement of the metal ions in the cluster molecule.
Resumo:
Using molecular building blocks to self-assemble lattices supporting long-range magnetic order is currently an active area of solid-state chemistry. Consequently, it is the realm of supramolecular chemistry that synthetic chemists are turning to in order to develop techniques for the synthesis of structurally well-defined supramolecular materials. In recent years we have investigated the versatility and usefulness of two classes of molecular building blocks, namely, tris-oxalato transition-metal (M. Pilkington and S. Decurtins, in “Magnetoscience—From Molecules to Materials,” Wiley–VCH, 2000), and octacyanometalate complexes (Pilkington and Decurtins, Chimia 54, 593 (2001)), for applications in the field of molecule-based magnets. Anionic, tris-chelated oxalato building blocks are able to build up two-dimensional honeycomb-layered structural motifs as well as three-dimensional decagon frameworks. The discrimination between the crystallization of the two- or three-dimensional structures relies on the choice of the templating counterions (Decurtins, Chimia 52, 539 (1998); Decurtins et al. Mol. Cryst. Liq. Cryst. 273, 167 (1995); New J. Chem. 117 (1998)). These structural types display a range of ferro, ferri, and antiferromagnetic properties (Pilkington and Decurtins, in “Magnetoscience—From Molecules to Materials”). Octacyanometalate building blocks self-assemble to afford two new classes of cyano-bridged compounds namely, molecular clusters and extended three dimensional networks (J. Larionova et al., Angew. Chem. Int. Ed. 39, 1605 (2000); Pilkington et al., in preparation). The molecular cluster with a MnII9MoV6 core has the highest ground state spin value, S=51/2, reported to-date (Larionova et al., Angew. Chem. Int. Ed. 39, 1605 (2000)). In the high-temperature regime, the magnetic properties are characterized by ferromagnetic intracluster coupling. In the magnetic range below 44 K, the magnetic cluster signature is lost as possibly a bulk behavior starts to emerge. The three-dimensional networks exhibit both paramagnetic and ferromagnetic behavior, since the magnetic properties of these materials directly reflect the electronic configuration of the metal ion incorporated into the octacyanometalate building blocks (Pilkington et al., in preparation). For both the oxalate- and cyanide-bridged materials, we are able to manipulate the magnetic properties of the supramolecular assemblies by tuning the electronic configurations of the metal ions incorporated into the appropriate molecular building blocks (Pilkington and Decurtins, in “Magnetoscience—From Molecules to Materials,” Chimia 54, 593 (2000)).
Resumo:
Our research goals are focused on the preparation of novel molecule-based materials that possess specifically designed properties in solution or in the solid state e.g. self-assembly, magnetism, conductivity and spin crossover phenomena. Most of our systems incorporate paramagnetic transition metal ions and the search for new molecule-based magnetic materials is a prominent theme. Specific areas of research include the preparation and study of oxalate based 2D and 3D magnets, probing the versatility of octacyanometalate building blocks as precursors for new molecular magnets, and the preparation of new tetrathiafulvalene (TIF) derivatives for applications in molecular and supramolecular chemistry.
Resumo:
The field of molecule-based magnets is a relatively new branch of chemistry, which involves the design and study of molecular compounds that exhibit a spontaneous magnetic ordering below a critical temperature, Tc. One major goal involves the design of materials with tuneable Tc's for specific applications in memory storage devices. Molecule-based magnets with high magnetic ordering temperatures have recently been obtained from bimetallic and mixed-valence transition metal μ-cyanide complexes of the Prussian blue family. Since the μ-cyanide linkages permit an interaction between paramagnetic metal ions, cyanometalate building blocks have found useful applications in the field of molecule-based magnets. Our work involves the use of octacyanometalate building blocks for the self-assembly of two new classes of magnetic materials namely, high-spin molecular clusters which exhibit both ferromagnetic intra- and intercluster coupling, and specific extended network topologies which show long-range ferromagnetic ordering.
Resumo:
The effectiveness of fluoride in caries prevention has been convincingly proven. In recent years, researchers have investigated the preventive effects of different fluoride formulations on erosive tooth wear with positive results, but their action on caries and erosion prevention must be based on different requirements, because there is no sheltered area in the erosive process as there is in the subsurface carious lesions. Thus, any protective mechanism from fluoride concerning erosion is limited to the surface or the near surface layer of enamel. However, reports on other protective agents show superior preventive results. The mechanism of action of tin-containing products is related to tin deposition onto the tooth surface, as well as the incorporation of tin into the near-surface layer of enamel. These tin-rich deposits are less susceptible to dissolution and may result in enhanced protection of the underlying tooth. Titanium tetrafluoride forms a protective layer on the tooth surface. It is believed that this layer is made up of hydrated hydrogen titanium phosphate. Products containing phosphates and/or proteins may adsorb either to the pellicle, rendering it more protective against demineralization, or directly to the dental hard tissue, probably competing with H(+) at specific sites on the tooth surface. Other substances may further enhance precipitation of calcium phosphates on the enamel surface, protecting it from additional acid impacts. Hence, the future of fluoride alone in erosion prevention looks grim, but the combination of fluoride with protective agents, such as polyvalent metal ions and some polymers, has much brighter prospects.
Resumo:
Bimetallic, oxalate-bridged compounds with bi- and trivalent transition metals comprise a class of layered materials which express a large variety in their molecular-based magnetic behavior. Because of this, the availability of the corresponding single-crystal structural data is essential to the successful interpretation of the experimental magnetic results. We report in this paper the crystal structure and magnetic properties of the ferromagnetic compound {[N(n-C3H7)4][MnIICrIII(C2O4)3]}n (1), the crystal structure of the antiferromagnetic compound {[N(n-C4H9)4][MnIIFeIII(C2O4)3]}n (2), and the results of a neutron diffraction study of a polycrystalline sample of the ferromagnetic compound {[P(C6D5)4][MnIICrIII(C2O4)3]}n (3). Crystal data: 1, rhombohedral, R3c, a = 9.363(3) Å, c = 49.207(27) Å, Z = 6; 2, hexagonal, P63, a = 9.482(2) Å, c = 17.827(8) Å, Z = 2. The structures consist of anionic, two-dimensional, honeycomb networks formed by the oxalate-bridged metal ions, interleaved by the templating cations. Single-crystal field dependent magnetization measurements as well as elastic neutron scattering experiments on the manganese(II)−chromium(III) samples show the existence of long-range ferromagnetic ordering behavior below Tc = 6 K. The magnetic structure corresponds to an alignment of the spins perpendicular to the network layers. In contrast, the manganese(II)−iron(III) compound expresses a two-dimensional antiferromagnetic ordering.
Resumo:
DNA ligase and DNA polymerase play important roles in DNA replication, repair, and recombination. Frequencies of spontaneous and chemical- and physical-induced mutations are correlated to the fidelity of DNA replication. This dissertation elucidates the mechanisms of the DNA ligation reaction by DNA ligases and demonstrates that human DNA ligase I and DNA polymerase $\alpha$ are the molecular targets for two metal ions, Zn$\sp{2+}$ and Cd$\sp{2+},$ and an anticancer drug, F-ara-ATP.^ Human DNA ligases were purified to homogeneity and their AMP binding domains were mapped. Although their AMP-binding domains are similar, there could be difference between the two ligases in their DNA binding domains.^ The formation of the AMP-DNA intermediate and the successive ligation reaction by human DNA ligases were analyzed. Both reactions showed their substrate specificity for ligases I and II, required Mg2+, and were inhibited by ATP.^ A protein inhibitor from HeLa cells and specific for human DNA ligase I but not ligase II and T4 ligase was discovered. It reversibly inhibited DNA ligation activity but not the AMP-binding activity due to the formation of a reversible ligase I-inhibitor complex.^ F-ara-ATP inhibited human DNA ligase I activity by competing with ATP for the AMP-binding site of DNA ligase I, forming a ligase I-F-ara-AMP complex, as well as when it was incorporated at 3$\sp\prime$-terminus of DNA nick by DNA polymerase $\alpha.$^ All steps of the DNA ligation reaction were inhibited by Zn$\sp{2+}$ and Cd$\sp{2+}$ in a concentration-dependent manner. Both ions did not show the ability to change the fidelity of DNA ligation reaction catalyzed by human DNA ligase I. However, Zn$\sp{2+}$ and Cd$\sp{2+}$ showed their contradictory effects on the fidelity of the reaction by human DNA polymerase $\alpha.$ Zn$\sp{2+}$ decreased the frequency of misinsertion but less affected that of mispair extension. On the contrary, Cd$\sp{2+}$ increased the frequencies of both misinsertion and mispair extension at very low concentration. Our data provided strong evidence in the molecular mechanisms for the mutagenicity of zinc and cadmium, and were comparable with the results previously reported. ^
Resumo:
A comparative study was carried out on soils of the maritime (Arctowski, King George Island) and the continental (Casey, Wilkes Land) Antarctic. Soil sampIes are described for surface layers (0-10 cm) by their in situ temperature profiles as well as by field and laboratory analyses of grain sizes, pH and nutrient contents. Active cryoturbation is a main factor of mixing processes in surfaces with high silt and clay content. In both regions processes of podzolisation were recognized. Microclimatic conditions show the importance of small scale processes which are of special importance for freeze-thaw cycles. The distribution of nutrients and other inorganic components is rather homogeneous in regosols and leptosols. But in soils with organic top layers by lichen and moss cushions (crusts) accumulation occurs as well as displacement of metal ions into deeper layers (>10 cm). Histosols show patterns of brown soils. Special attention is given to the origin of nitrogen compounts and the different ways of import of other components (e.g. chloride) into the Antarctic system are discussed.
Resumo:
CHIM method involves extracting metal ions of electromobile forms in either anodes or cathodes, facilitated by a man-made electric field. This paper presents two newly developed CHIM alternatives that are electrified by a low voltage dipole. The firstly improved technique enables cationic ions to be extracted in a single cathode, whereas the secondly improved technique allows both anionic and cationic species to be extracted simultaneously in an anode and in a cathode. Compared with the traditional CHIM methods, the innovative techniques developed in this paper are characterized by simple instrumentation, low cost and easy operation in field, and in particular enables simultaneous extraction of anionic and cationic species of elements, from which more information can be derived with higher extraction efficiency. Field tests at several well-known mine areas in China confirm the effectiveness and efficiency of the new techniques in exploring for deeply buried ore bodies.
Resumo:
Transition metals such as Fe, Cu, Mn, Ni, or Co are essential nutrients, as they are constitutive elements of a significant fraction of cell proteins. Such metals are present in the active site of many enzymes, and also participate as structural elements in different proteins. From a chemical point of view, metals have a defined order of affinity for binding, designated as the Irving-Williams series (Irving and Williams, 1948) Mg2+ menor que Mn2+ menor que Fe2+ menor que Co2+ menor que Ni2+ menor que Cu2+mayor queZn2+ Since cells contain a high number of different proteins harbouring different metal ions, a simplistic model in which proteins are synthesized and metals imported into a ?cytoplasmic soup? cannot explain the final product that we find in the cell. Instead we need to envisage a complex model in which specific ligands are present in definite amounts to leave the right amounts of available metals and protein binding sites, so specific pairs can bind appropriately. A critical control on the amount of ligands and metal present is exerted through specific metal-responsive regulators able to induce the synthesis of the right amount of ligands (essentially metal binding proteins), import and efflux proteins. These systems are adapted to establish the metal-protein equilibria compatible with the formation of the right metalloprotein complexes. Understanding this complex network of interactions is central to the understanding of metal metabolism for the synthesis of metalloenzymes, a key topic in the Rhizobium-legume symbiosis. In the case of the Rhizobium leguminosarum bv viciae (Rlv) UPM791 -Pisum sativum symbiotic system, the concentration of nickel in the plant nutrient solution is a limiting factor for hydrogenase expression, and provision of high amounts of this element to the plant nutrient solution is required to ensure optimal levels of enzyme synthesis (Brito et al., 1994).
Resumo:
Esta tesis presenta los resultados de la investigación realizada sobre la inertización de cenizas volantes procedentes de residuos sólidos urbanos y su posterior encapsulación en distintas matrices de mortero. Durante el proceso de inertización, se ha logrado la inertización de éste residuo tóxico y peligroso (RTP) y también su valorización como subproducto. De esta forma se dispone de nueva “materia prima” a bajo coste y la eliminación de un residuo tóxico y peligroso con la consiguiente conservación de recursos naturales alternativos. La caracterización química de las cenizas analizadas refleja que éstas presentan altas concentraciones de cloruros, Zn y Pb. Durante la investigación se ha desarrollado un proceso de inertización de las cenizas volantes con bicarbonato sódico (NaHCO3) que reduce en un 99% el contenido en cloruros y mantiene el pH en valores óptimos para que la concentración de los metales pesados en el lixiviado sea mínima debido a su estabilización en forma de carbonatos insolubles. Se han elaborado morteros con cuatro tipos distintos de cementos (CEM-I, CEM-II, CAC y CSA) incorporando cenizas volantes inertizadas en una proporción igual a un 10% en peso del árido utilizado. Los morteros ensayados abarcan distintas dosificaciones tanto en la utilización de áridos con distintos diámetros (0/2 y 0/4), como en la relación cemento/árido (1/1 y 1/3). Se han obtenido las propiedades físicas y mecánicas de estos morteros mediante ensayos de Trabajabilidad, Estabilidad Dimensional, Carbonatación, Porosidad y Resistencias Mecánicas. De igual forma, se presentan resultados de ensayos de lixiviación de Zn, Pb, Cu y Cd, sobre probetas monolíticas de los morteros con los mejores comportamientos físico/mecánicos, donde se ha analizado el contenido en iones de dichos metales pesados lixiviados mediante determinación voltamperométrica de redisolución anódica Se concluye que todos los morteros ensayados son técnicamente aceptables, siendo los más favorables los elaborados con Cemento de Sulfoaluminato de Calcio (CSA) y con Cemento de Aluminato de Calcio (CAC). En este último caso, se mejoran las resistencias a compresión de los morteros de referencia en más de un 48%, y las resistencias a flexión en más de un 67%. De igual forma, los ensayos de lixiviado revelan la completa encapsulación de los iones de Zn y la mitigación en el lixiviado de los iones de Pb. Ambos morteros podrían ser perfectamente validos en actuaciones en las que se necesitase un producto de fraguado rápido, altas resistencias iniciales y compensación de las retracciones con una elevada estabilidad dimensional. En base a esto, el material podría ser utilizado como mortero de reparación en viales y pavimentos que requiriesen altas prestaciones, tales como: soleras industriales, pistas de aterrizaje, aparcamientos, etc. O bien, para la confección de elementos prefabricados sin armaduras estructurales, dada su elevada resistencia a flexión. ABSTRACT This dissertation presents the results of a research on inerting fly ash from urban solid waste and its subsequent encapsulation in mortar matrixes. The inerting of this hazardous toxic waste, as well as its valorization as a by-product has been achieved. In this way, a new "raw material" is available through a simple process and the toxic and hazardous waste is eliminated, and consequently, conservation of alternative natural resources is strengthened. Chemical analysis of the ashes analyzed shows high concentrations of soluble chlorides, Zn and Pb. An inerting process of fly ash with sodium bicarbonate (NaHCO3) has been developed which reduces 99% the content of chlorides and maintains pH at optimal values, so that the concentration of heavy metals in the leachate is minimum, due to its stabilization in the form of insoluble carbonates. Mortars with four different types of cements (CEM-I, CEM-II, CAC and CSA) have been developed by the addition of inertized fly ash in the form of carbonates, in the proportion of 10% in weight of the aggregates used. The samples tested include different proportions in the use of aggregates with different sizes (0/2 and 0/4), and in the cement/aggregate ratio (1/1 and 1/3). Physical/mechanical properties of these mortars have been studied through workability, dimensional stability, carbonation, porosity and mechanic strength tests. Leaching tests of Zn, Pb, Cu and Cd ions are also being performed on monolithic samples of the best behavioral mortars. The content in leachated heavy metal ions is being analyzed through stripping voltammetry determination. Conclusions drawn are that the tested CAC and CSA cement mortars present much better behavior than those of CEM-I and CEM-II cement. The results are especially remarkable for the CAC cement mortars, improving reference mortars compression strengths in more than 48%, and also bending strengths in more than 67%. Leaching tests confirm that the encapsulation of Zn and Pb is achieved and leachate of both ions is mitigated within the mortar matrixes. For the above stated reasons, it might be concluded that mortars made with calcium aluminate cements or calcium sulfoaluminate with the incorporation of treated fly ash, may be perfectly valid for uses in which a fast-curing product, with high initial strength and drying shrinkage compensation with a high dimensional stability is required. Based on this, the material could be used as repair mortar for structures, roads and industrial pavements requiring high performance, such as: industrial floorings, landing tracks, parking lots, etc. Alternatively, it could also be used in the manufacture of prefabricated elements without structural reinforcement, given its high bending strength.
Resumo:
Zeolites constitute one of the less common groups of tectosilicates. Zeoli1es with pores between -2 to 10 A in their structures have strong sorption capacity and are widely used in industrial and municipal operations to eliminate toxic substances. One of the major environmental problems in the mining activity is the treating of acid mine drainage. In this context, it is very important to search alternatives to manage this challenge. One feasible alternative is using zeolitic tuffs. The results of the physical-chemical characterization of zeolitic tuffs are the c1ue lo continue or not with deeper analysis and tests 01 acid mine drainage treatments. The guidelines to reach this purpose are the main goal of this work. Zeolite 1uff samples (named as XB_01 and XB_02) studied in this work were laken rn the Late Cretaceous Coastal Cayo Arch Ecuador, specifically in the Guaraguao River, showing the most important characteristics of heulandite zeolitic tuffs. X-ray powder diffraction (XRD) tests were developed in order to confirm that the samples belong to the heulandite-type zeoli1ic tuffs. Additionally, Thermogravimetric analysis (TG), Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and X-ray fluorescence (XRF) of the samples was necessary in order to define the Si/Al ratio and the main mineralogical phases. The XB_01 sample shows a higher ratio Si/Al than XB_02 sample. The cation exchange capacity est was the fundamental step to define the potentiality of the zeolite to use in acid mine drainage treatment Three methodologies were employed to determine the cation exchange capacity. The Cuban standard 626 and the ammonium exchange methodologies reflect results more consistent with each other. This is the starting point to continue with deeper studies such as breakthrough curves for heavy metal ions found in acid mine waters.
Resumo:
Scytalone dehydratase (EC 4.2.1.94) catalyzes the dehydration of two important intermediates in the biosynthesis of melanin, and it functions without metal ions or any cofactors. Using molecular orbital theory, we have examined the role of a critical water molecule in the mechanism of scytalone dehydratase. The water, together with an internal hydrogen bonding, contributes significantly to the stabilization of the transition state (or the enolate intermediate). The role of two active site tyrosines (Tyr-50 and Tyr-30) is (i) to hold the critical water in place so that it may stabilize the transition state without much structural rearrangement during the catalytic reaction, and (ii) to polarize the water, making it a better general acid. The stereochemistry of the scytalone dehydratase-catalyzed dehydration is also discussed.
Resumo:
Millions of people worldwide suffer from nutritional imbalances of essential metals like zinc. These same metals, along with pollutants like cadmium and lead, contaminate soils at many sites around the world. In addition to posing a threat to human health, these metals can poison plants, livestock, and wildlife. Deciphering how metals are absorbed, transported, and incorporated as protein cofactors may help solve both of these problems. For example, edible plants could be engineered to serve as better dietary sources of metal nutrients, and other plant species could be tailored to remove metal ions from contaminated soils. We report here the cloning of the first zinc transporter genes from plants, the ZIP1, ZIP2, and ZIP3 genes of Arabidopsis thaliana. Expression in yeast of these closely related genes confers zinc uptake activities. In the plant, ZIP1 and ZIP3 are expressed in roots in response to zinc deficiency, suggesting that they transport zinc from the soil into the plant. Although expression of ZIP2 has not been detected, a fourth related Arabidopsis gene identified by genome sequencing, ZIP4, is induced in both shoots and roots of zinc-limited plants. Thus, ZIP4 may transport zinc intracellularly or between plant tissues. These ZIP proteins define a family of metal ion transporters that are found in plants, protozoa, fungi, invertebrates, and vertebrates, making it now possible to address questions of metal ion accumulation and homeostasis in diverse organisms.
Resumo:
Mitochondria have been proposed to possess base excision repair processes to correct oxidative damage to the mitochondrial genome. As the only DNA polymerase (pol) present in mitochondria, pol γ is necessarily implicated in such processes. Therefore, we tested the ability of the catalytic subunit of human pol γ to participate in uracil-provoked base excision repair reconstituted in vitro with purified components. Subsequent to actions of uracil-DNA glycosylase and apurinic/apyrimidinic endonuclease, human pol γ was able to fill a single nucleotide gap in the presence of a 5′ terminal deoxyribose phosphate (dRP) flap. We report here that the catalytic subunit of human pol γ catalyzes release of the dRP residue from incised apurinic/apyrimidinic sites to produce a substrate for DNA ligase. The heat sensitivity of this activity suggests the dRP lyase function requires a three-dimensional protein structure. The dRP lyase activity does not require divalent metal ions, and the ability to trap covalent enzyme-DNA complexes with NaBH4 strongly implicates a Schiff base intermediate in a β-elimination reaction mechanism.