953 resultados para bat-borne viruses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Meir Max ha-Levi Letteris

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis project focused on understanding the basic process controlling cell proliferation in sex-steroid hormone dependent cancers. The availability of inculture models using cloned cell lines offers the greatest advantage for studying the control of this event. Incubation of cloned sex-hormone sensitive cells in medium containing increasing concentrations of sex-hormone stripped serum, results in a dose dependent growth inhibition; this inhibition is reversed by the addition of physiological concentrations of steroid hormones. The mechanisms explaining this phenomenon are not yet fully understood, but different theories propose the existence in serum of a sex hormone binding protein with growth inhibitory properties. We were able to identify a protein that specifically binds sex hormones in rat and horse serum with affinities 10-fold lower to the ones observed with the classic sex-hormone binding globulin (SHBG) in humans. Purification of this protein on a large scale Lowed a more detailed analysis. The putative sex-hormone binding protein has an apparent molecular weight of 386 KDa. SDS-PAGE with commassie staining of the purified product, displayed a pattern non-characteristic of SMG, but all bands cross-reacted with a commercial anti-SMG antibody in western analysis. Titrations of the purified product on cell proliferation assays using sex-hormone dependent lines, resulted in a dose dependent growth inhibition. This inhibition was reversed by the addition of sex hormones. Our results indicate that we have identified and purified a sex-hormone binding protein in serum with characteristics similar to SHBG and with cell growth inhibitory properties. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signatur des Originals: S 36/F09060

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute diarrhea is the most common medical problem in the developing countries. Infectious agents are responsible for a majority of cases of acute diarrhea. Knowing the cause of acute diarrhea is important to developing plans for disease prevention, control and therapy. Acute diarrhea is caused by many viruses, bacteria and parasites. ^ Travelers to developing countries of the world commonly develop diarrhea as a result of eating contaminated food or drinking contaminated water. About 30-50% of travelers who travel from industrialized countries like United States to the developing countries are at risk of developing diarrhea. High risk areas for travelers' diarrhea are Mexico, Latin America and Southeast Asia. Public restaurants are the common sites for exposure to this type of food-borne infectious disease in travelers. Food becomes contaminated when they are handled by people with fecal content on their hands. ^ The importance of Diffusely Adherent Escherichia Coli (DAEC) in travelers to these areas has not been well studied. Some of the studies looking at DAEC have shown the organism to be present in children without symptoms. Other studies have shown a relationship between DAEC infection and presence of symptoms. I have selected this topic because the patho-physiological processes in DAEC infection that allow intestinal and extra-intestinal infections to develop are not fully understood. DAEC related acute diarrhea is a relatively new topic of public health significance. There is a limited number of studies regarding the virulence and pathogenic mechanisms of DAEC. The presumed virulence factor of the organism is diffuse attachment to the intestinal lining of the infected host. However more research needs to be done to identify the pathogenic mechanisms and virulence factors associated with DAEC infection for better treatment planning and diarrhea prevention. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global climate change is becoming an increasing concern among the public health community. Some researchers believe the earth is rapidly undergoing changes in temperature, sea level, population movement, and extreme weather phenomenon. With these geographic, meteorological, and social changes come increased threats to human health. One of these threats is the spread of vector-borne infectious diseases. The changes mentioned above are believed to contribute to increased arthropod survival, transmission, and habitation. These changes, in turn, lead to increased incidence among neighboring human populations. It is also argued that human action may play more of a role than climate change. This systematic review served to determine whether or not climate change poses a significant risk to human exposure and increased incidence of vector-borne disease. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wound healing is a conserved survival response whose function is to restore the integrity of the tissue after physical trauma. Despite numerous studies in the wound healing field, the signals and pathways that orchestrate and control the wound healing program are still not entirely known. To identify additional signals and pathways that regulate epidermal wound repair in Drosophila larvae, we performed a pilot in vivo RNAi screen using a live reporter for epidermal morphology and a wounding assay. From our pilot screen we identified Pvr, the Drosophila homolog of the vertebrate PDGF/VEGF receptors, and six other genes as epidermal wound healing genes. Morphological analysis of wound-edge cells lacking Pvr or the Drosophila Jun N-terminal Kinase (JNK), previously implicated in larval wound closure, suggest that Pvr signaling leads to cell process extension into the wound site while JNK mediates transient dedifferentiation of wound-edge epidermal cells. Furthermore, we found that one of the three known Pvr ligands, Pvf1, is also required for epidermal wound closure. Through tissue-specific knock down and rescue experiments, we propose a model in which epidermally-produced Pvf1 may be sequestered into the hemolymph (blood) and that tissue damage locally exposes blood-borne Pvf1 to Pvr receptors on epidermal cells at the wound edge, thus initiating epidermal cell process extension and migration into the wound gap. Together, our data suggest that the Pvr and JNK signaling pathways act in parallel to control different aspects of wound closure and that PDGF/VEGF ligands and receptors may have a conserved autocrine role in epidermal wound closure. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Reoviridae virus family is a group of economically and pathologically important viruses that have either single-, double-, or triple-shelled protein layers enclosing a segmented double stranded RNA genome. Each virus particle in this family has its own viral RNA dependent RNA polymerase and the enzymatic activities necessary for the mature RNA synthesis. Based on the structure of the inner most cores of the viruses, the Reoviridae viruses can be divided into two major groups. One group of viruses has a smooth surfaced inner core, surrounded by complete outer shells of one or two protein layers. The other group has an inner core decorated with turrets on the five-fold vertices, and could either completely lack or have incomplete outer protein layers. The structural difference is one of the determinant factors for their biological differences during the infection. ^ Cytoplasmic polyhedrosis virus (CPV) is a single-shelled, turreted virus and the structurally simplest member in Reoviridae. It causes specific chronic infections in the insect gut epithelial cells. Due to its wide range of insect hosts, CPV has been engineered as a potential insecticide for use in fruit and vegetable farming. Its unique structural simplicity, unparalleled capsid stability and ease of purification make CPV an ideal model system for studying the structural basis of dsRNA virus assembly at the highest possible resolution by electron cryomicroscopy (cryoEM) and three-dimensional (3D) reconstruction. ^ In this thesis work, I determined the first 3D structure of CPV capsids using 100 kV cryoEM. At an effective resolution of 17 Å, the full capsid reveals a 600-Å diameter, T = 1 icosahedral shell decorated with A and B spikes at the 5-fold vertices. The internal space of the empty CPV is unoccupied except for 12 mushroom-shaped densities that are attributed to the transcriptional enzyme complexes. The inside of the full capsid is packed with icosahedrally-ordered viral genomic RNA. The interactions of viral RNA with the transcriptional enzyme complexes and other capsid proteins suggest a mechanism for RNA transcription and subsequent release. ^ Second, the interactions between the turret proteins (TPs) and the major capsid shell protein (CSPs) have been identified through 3D structural comparisons of the intact CPV capsids with the spikeless CPV capsids, which were generated by chemical treatments. The differential effects of these chemical treatment experiments also indicated that CPV has a significantly stronger structural integrity than other dsRNA viruses, such as the orthoreovirus subcores, which are normally enclosed within outer protein shells. ^ Finally, we have reconstructed the intact CPV to an unprecendented 8 Å resolution from several thousand of 400kV cryoEM images. The 8 Å structure reveals interactions among the 120 molecules of each of the capsid shell protein (CSP), the large protrusion protein (LPP), and 60 molecules of the turret protein (TP). A total of 1980 α-helices and 720 β-sheets have been identified in these capsid proteins. The CSP structure is largely conserved, with the majority of the secondary structures homologous to those observed in the x-ray structures of corresponding proteins of other reoviruses, such as orthoreovirus and bluetongue virus. The three domains of TP are well positioned to play multifunctional roles during viral transcription. The completely non-equivalent interactions between LPP and CSP and those between the anchoring domain of TP and CSP account for the unparalleled stability of this structurally simplest member of the Reoviridae. ^