938 resultados para additive genetic variation
Resumo:
The relative stability and magnitude of genetic and environmental effects underlying major dimensions of adolescent personality across time were investigated. The Junior Eysenck Personality Questionnaire was administered to over 540 twin pairs at ages 12, 14 and 16 years. Their personality scores were analyzed using genetic simplex modeling which explicitly took into account the longitudinal nature of the data. With the exception of the dimension lie, multivariate model fitting results revealed that familial aggregation was entirely explained by additive genetic effects. Results from simplex model fitting suggest that large proportions of the additive genetic variance observed at ages 14 and 16 years could be explained by genetic effects present at the age of 12 years. There was also evidence for smaller but significant genetic innovations at 14 and 16 years of age for male and female neuroticism, at 14 years for male extraversion, at 14 and 16 years for female psychoticism, and at 14 years for male psychoticism.
Resumo:
An absence of genetic variance in traits under selection is perhaps the oldest explanation for a limit to evolutionary change, but has also been the most easily dismissed. We review a range of theoretical and empirical results covering single traits to more complex multivariate systems, and show that an absence of genetic variance may be more common than is currently appreciated. From a single-trait perspective, we highlight that it is becoming clear that some trait types do not display significant levels of genetic variation, and we raise the possibility that species with restricted ranges may differ qualitatively from more widespread species in levels of genetic variance in ecologically important traits. A common misconception in many life-history studies is that a lack of genetic variance in single traits, and genetic constraints as a consequence of bivariate genetic correlations, are different causes of selection limits. We detail how interpretations of bivariate patterns are unlikely to demonstrate genetic limits to selection in many cases. We advocate a multivariate definition of genetic constraints that emphasizes the presence (or otherwise) of genetic variance in the multivariate direction of selection. For multitrait systems, recent results using longer term studies of organisms, in which more is understood concerning what traits may be under selection, have indicated that selection may exhaust genetic variance, resulting in a limit to the selection response.
Resumo:
Genetic control of adventitious rooting was characterised in two unrelated Pinus elliottii x P. caribaea families, an outbred F-1 (n = 287) and an inbred F-2 ( n = 357). Rooting percentage was assessed in three settings and root biomass was measured on a sub-set of clones ( n = 50) from each family in the third setting. On average, clones in the outbred F-1 had a higher rooting percentage (mean +/- SE; 59 +/- 1.9%) and biomass (mean +/- SD; 0.41 +/- 0.24 g) than clones in the inbred F-2 family ( mean +/- SE; 48 +/- 1.8% and mean +/- SD; 0.19 +/- 0.13 g). Genetic determination for rooting percentage was strong in both families, as indicated by high individual setting clonal repeatabilities ( e. g. Setting 3; outbred F-1 0.62 +/- 0.03 and inbred F-2 0.68 +/- 0.02 (H-2 +/- SE)) and the moderate-to-high genetic correlations amongst the three settings. For root biomass, clonal repeatabilities for both families were lower (outbred F-1 0.35 +/- 0.09 and inbred F-2 0.44 +/- 0.10 (H-2 +/- SE)). Weak positive genetic correlations between rooting percentage and root biomass in both families suggested a concomitant gain in root biomass would be insignificant when selecting solely on the more easily assessable rooting percentage.
Resumo:
Nothofagus moorei (F. Muell.) Krasser has a disjunct and narrow distribution in south-eastern Australian cool temperate rainforest. To assess the conservation-genetic priorities for this species, the genetic diversity of 20 populations sampled from the largest remnant patches at northern and southern distributional extremes, the McPherson and Barrington ranges (a total of 146 individuals), was investigated by using inter simple sequence repeats (ISSR). Regeneration in northern regions of N. moorei has been documented to be predominantly by vegetative means, but our results indicate little evidence of clonality outside the multi-stemmed rings of trees. In addition, genetic diversity was considerably higher in the northern (McPherson, h = 0.1613) than in the southern range (Barrington, h = 0.1159), and genetic differentiation was significantly positively correlated with geographic distance in the former region, but not the latter. Total intraspecific variation was moderate, as measured by Shannon's diversity index, I = 0.2719, and Nei's gene diversity, h = 0.1672, and is considered at the high end of spectrum for estimates of narrow endemic species. An analysis of molecular variation indicated that the majority of genetic variation is partitioned among individuals within population (60%; P < 0.001), rather than among populations within regions (10%; P < 0.001). However, a large and significant component of the measured diversity was partitioned between northern and southern regions (29%; P < 0.001). Several hypotheses are outlined to explain these differences and management implications are discussed. However, given the narrow range, poor dispersal mechanism and restriction to cool temperate rainforest, the continued existence of N. moorei is most threatened by environmental instability and habitat loss resulting from global climate change. In this context the northern regions of the species are most at risk and extinction of such populations would lead to a significant loss of genetic variation for the species as a whole.
Resumo:
Background. We examined whether there are genetic influences on nicotine withdrawal. and whether there are genetic factors specific to nicotine withdrawal, after controlling for factors responsible for risk of progression beyond experimentation with cigarettes and for quantity smoked (average number of cigarettes per day at peak lifetime use). Method. Epidemiologic and genetic analyses were conducted using telephone diagnostic interview data from Young adult Australian twins reporting any cigarette use (3026 women. 2553 men: mean age 30 years). Results. Genetic analysis of the eight symptoms of DSM-IV nicotine withdrawal suggests heritability is intermediate for most symptoms (26-43%). and Similar in men and women. The exceptions were depressed mood upon withdrawal. which had stronger additive genetic influences in men (53%) compared to worrien (29%). and decreased heart rate. which had low heritability (9%). Although prevalence rates were substantlally lower for DSM-IV nicotine withdrawal syndrome (15-9%), which requires impairment. than for the DSM-IV nicotine dependence withdrawal criterion (43.6%), heritability was similar for both measures: as high as 47%. Genetic modeling of smoking more than 1 or 2 cigarettes lifetime ('progression'). qualtity smoked and nicotine withdrawal found significant genetic overlap across all three components of nicotine use/dependence (genetic correlations = 0.53-0.76). Controlling for factors associated with risk of cigarette smoking beyond experimentation and quantity smoked, evidence for genetic influences specific to nicotine withdrawal (up to 23% of total variance) remained. Conclusions. Our results suggest that at least some individuals become 'hooked' or progress in the smoking habit, in part, because of it vulnerability to nicotine withdrawal.
Resumo:
Background: The low-activity variant of the aldehyde dehydrogenase 2 (ALDH2) gene found in East Asian populations leads to the alcohol flush reaction and reduces alcohol consumption and risk of alcohol dependence (AD). We have tested whether other polymorphisms in the ALDH2 gene have similar effects in people of European ancestry. Methods: Serial measurements of blood and breath alcohol, subjective intoxication, body sway, skin temperature, blood pressure, and pulse were obtained in 412 twins who took part in an alcohol challenge study. Participants provided data on alcohol reactions, alcohol consumption, and symptoms related to AD at the time of the study and subsequently. Haplotypes based on 5 single-nucleotide polymorphisms (SNPs) were used in tests of the effects of variation in the ALDH2 gene on alcohol metabolism and alcohol's effects. Results: The typed SNPs were in strong linkage disequilibrium and 2 complementary haplotypes comprised 83% of those observed. Significant effects of ALDH2 haplotype were observed for breath alcohol concentration, with similar but smaller and nonsignificant effects on blood alcohol. Haplotype-related variation in responses to alcohol, and reported alcohol consumption, was small and not consistently in the direction predicted by the effects on alcohol concentrations. Conclusions: Genetic variation in ALDH2 affects alcohol metabolism in Europeans. However, the data do not support the hypothesis that this leads to effects on alcohol sensitivity, consumption, or risk of dependence.
Resumo:
The study of continuously varying, quantitative traits is important in evolutionary biology, agriculture, and medicine. Variation in such traits is attributable to many, possibly interacting, genes whose expression may be sensitive to the environment, which makes their dissection into underlying causative factors difficult. An important population parameter for quantitative traits is heritability, the proportion of total variance that is due to genetic factors. Response to artificial and natural selection and the degree of resemblance between relatives are all a function of this parameter. Following the classic paper by R. A. Fisher in 1918, the estimation of additive and dominance genetic variance and heritability in populations is based upon the expected proportion of genes shared between different types of relatives, and explicit, often controversial and untestable models of genetic and non-genetic causes of family resemblance. With genome-wide coverage of genetic markers it is now possible to estimate such parameters solely within families using the actual degree of identity-by-descent sharing between relatives. Using genome scans on 4,401 quasi-independent sib pairs of which 3,375 pairs had phenotypes, we estimated the heritability of height from empirical genome-wide identity-by-descent sharing, which varied from 0.374 to 0.617 (mean 0.498, standard deviation 0.036). The variance in identity-by-descent sharing per chromosome and per genome was consistent with theory. The maximum likelihood estimate of the heritability for height was 0.80 with no evidence for non-genetic causes of sib resemblance, consistent with results from independent twin and family studies but using an entirely separate source of information. Our application shows that it is feasible to estimate genetic variance solely from within- family segregation and provides an independent validation of previously untestable assumptions. Given sufficient data, our new paradigm will allow the estimation of genetic variation for disease susceptibility and quantitative traits that is free from confounding with non-genetic factors and will allow partitioning of genetic variation into additive and non-additive components.
Resumo:
An international collection of the sugarcane ratoon stunting disease pathogen, Leifsonia xyli subsp. xyli, was analysed to assess genetic diversity. DNA fingerprinting using BOX primers was performed on 105 isolates, comprising 65 Australian isolates and an additional 40 isolates from Indonesia (n = 8), Japan (n = 1), USA (n = 3), Brazil (n = 2), Mali (n = 2), Zimbabwe (n = 13), South Africa (n = 9) and Reunion (n = 2). Sixty-two of these isolates were also screened using ERIC primers. No variation was found among any of the isolates. The intergenic spacer (IGS) region of the ribosomal RNA genes from 54 isolates was screened for sequence variation using single-stranded conformational polymorphism (SSCP), but none was observed. Direct sequencing of the IGS from a subset of nine isolates, representing all of the countries sampled in this study, confirmed the results of the SSCP analysis. Likewise, no sequence variation was found in the 16S ribosomal RNA genes of the same subset. Four Colombian isolates from sugarcane, morphologically similar to L. xyli subsp. xyli, were putatively shown to be an undescribed Agrococcus species of unknown pathogenicity. The lack of genetic variation among L. xyli subsp. xyli isolates, independent of time of sampling, cultivar of isolation, or country of origin, suggests the worldwide spread of a single pathogenic clone, and further suggests that sugarcane cultivars resistant to ratoon stunting disease in one area should retain this property in other regions.
Resumo:
Quantitative genetics provides a powerful framework for studying phenotypic evolution and the evolution of adaptive genetic variation. Central to the approach is G, the matrix of additive genetic variances and covariances. G summarizes the genetic basis of the traits and can be used to predict the phenotypic response to multivariate selection or to drift. Recent analytical and computational advances have improved both the power and the accessibility of the necessary multivariate statistics. It is now possible to study the relationships between G and other evolutionary parameters, such as those describing the mutational input, the shape and orientation of the adaptive landscape, and the phenotypic divergence among populations. At the same time, we are moving towards a greater understanding of how the genetic variation summarized by G evolves. Computer simulations of the evolution of G, innovations in matrix comparison methods, and rapid development of powerful molecular genetic tools have all opened the way for dissecting the interaction between allelic variation and evolutionary process. Here I discuss some current uses of G, problems with the application of these approaches, and identify avenues for future research.
Resumo:
The consensus from published studies is that plasma lipids are each influenced by genetic factors, and that this contributes to genetic variation in risk of cardiovascular disease. Heritability estimates for lipids and lipoproteins are in the range .48 to .87, when measured once per study participant. However, this ignores the confounding effects of biological variation measurement error and ageing, and a truer assessment of genetic effects on cardiovascular risk may be obtained from analysis of longitudinal twin or family data. We have analyzed information on plasma high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol, and triglycerides, from 415 adult twins who provided blood on two to five occasions over 10 to 17 years. Multivariate modeling of genetic and environmental contributions to variation within and across occasions was used to assess the extent to which genetic and environmental factors have long-term effects on plasma lipids. Results indicated that more than one genetic factor influenced HDL and LDL components of cholesterol, and triglycerides over time in all studies. Nonshared environmental factors did not have significant long-term effects except for HDL. We conclude that when heritability of lipid risk factors is estimated on only one occasion, the existence of biological variation and measurement errors leads to underestimation of the importance of genetic factors as a cause of variation in long-term risk within the population. In addition our data suggest that different genes may affect the risk profile at different ages.
Resumo:
Background A sedentary lifestyle remains a major threat to health in contemporary societies. To get more insight in the relative contribution of genetic and environmental influences on individual differences in exercise participation, twin samples from seven countries participating in the GenomEUtwin project were used. Methodology Self-reported data on leisure time exercise behavior from Australia, Denmark, Finland, Norway, the Netherlands, Sweden and United Kingdom were used to create a comparable index of exercise participation in each country (60 minutes weekly at a minimum intensity of four metabolic equivalents). Principal Findings Modest geographical variation in exercise participation was revealed in 85,198 subjects, aged 19–40 years. Modeling of monozygotic and dizygotic twin resemblance showed that genetic effects play an important role in explaining individual differences in exercise participation in each country. Shared environmental effects played no role except for Norwegian males. Heritability of exercise participation in males and females was similar and ranged from 48% to 71% (excluding Norwegian males). Conclusions Genetic variation is important in individual exercise behavior and may involve genes influencing the acute mood effects of exercise, high exercise ability, high weight loss ability, and personality. This collaborative study suggests that attempts to find genes influencing exercise participation can pool exercise data across multiple countries and different instruments
Resumo:
Background Considerable evidence from twin and adoption studies indicates that genetic and shared environmental factors play a significant role in the initiation of smoking behavior. Although twin and adoption designs are powerful to detect genetic and environmental influences, they do not provide information on the processes of assortative mating and parent–offspring transmission and their contribution to the variability explained by genetic and/or environmental factors. Methods We examined the role of genetic and environmental factors for smoking initiation using an extended kinship design. This design allows the simultaneous testing of additive and non-additive genetic, shared and individual-specific environmental factors, as well as sex differences in the expression of genes and environment in the presence of assortative mating and combined genetic and cultural transmission. A dichotomous lifetime smoking measure was obtained from twins and relatives in the Virginia 30,000 sample. Results Results demonstrate that both genetic and environmental factors play a significant role in the liability to smoking initiation. Major influences on individual differences appeared to be additive genetic and unique environmental effects, with smaller contributions from assortative mating, shared sibling environment, twin environment, cultural transmission and resulting genotype–environment covariance. The finding of negative cultural transmission without dominance led us to investigate more closely two possible mechanisms for the lower parent–offspring correlations compared to the sibling and DZ twin correlations in subsets of the data: (i) age × gene interaction, and (ii) social homogamy. Neither mechanism provided a significantly better explanation of the data, although age regression was significant. Conclusions This study showed significant heritability, partly due to assortment, and significant effects of primarily non-parental shared environment on smoking initiation.
Resumo:
2000 Mathematics Subject Classification: 62H12, 62P99
Resumo:
Dioon Lindl. (Zamiaceae) is a small genus restricted to Mexico (12 species) and Honduras (one species). Previous systematic studies have been unable to fully resolve species relationships within the genus. Phylogenetic analyses were conducted with data from several sources, including Restriction Fragment Length Polymorphisms from the chloroplast genome, morphology, two introns of the low copy nuclear gene S-adenosyl-L-homocysteine hydrolase (SAHH) and the 5.8S/ITS2 regions of the nuclear ribosomal DNA. The goals of the study were to construct a total evidence species level phylogeny and to explore current biogeographical hypotheses. None of the analyses performed produced a fully resolved topology. Dioon is comprised of two main lineages (the Edule and Spinulosum Clades), which represents an ancient divergence within the genus. The two introns of the nuclear gene SAHH offer additional evidence for the split into two lineages. Intron 2 contains a 18 bp deletion in the Spinulosum Clade, providing a synapomorphy for that group. The 5.8S/ITS2 regions were highly polymorphic and subsequently omitted from the combined analyses. In order to visualize congruence between morphology and molecular data, morphological characters were mapped onto the combined molecular tree. Current biogeographical hypotheses of a general northward pattern of migration and speciation are supported here. However, sister relationships within the Edule Clade are not fully resolved. Seven DNA microsatellite markers were developed to investigate patterns of genetic variation of seven populations of D. edule, a species restricted to Eastern Mexico. We found that most of the genetic variation lies within populations (Ho = 0.2166–0.3657) and that levels of population differentiation are low (Fst = 0.088); this finding is congruent with the breeding system of this species, dioicy. Four of the populations deviate from Hardy Weinberg Equilibrium and have a high number of identical genotypes, we suggest that this unexpected pattern is due to the life-history strategy of the species coupled with the few number of polymorphic loci detected in these populations. Our results are not congruent with earlier evidence from morphology and allozyme markers that suggest that the two northernmost populations represent a distinct entity that is recognized by some taxonomists as D. angustifolium.
Resumo:
We analyzed the effect of periodic drying in the Florida Everglades on spatiotemporal population genetic structure of eastern mosquitofish (Gambusia holbrooki). Severe periodic drying events force individuals from disparate sources to mix in dry season relatively deep-water refuges. In 1996 (a wet year) and 1999 (a dry year), we sampled mosquitofish at 20 dry-season refuges distributed in 3 water management regions and characterized genetic variation for 10 allozyme and 3 microsatellite loci. In 1996, most of the ecosystem did not dry, whereas in 1999, many of our sampling locations were isolated by expanses of dried marsh surface. In 1996, most spatial genetic variation was attributed to heterogeneity within regions. In 1999, spatial genetic variation within regions was not significant. In both years, a small but significant amount of variation (less than 1% of the total variation) was partitioned among regions. Variance was consistently greater than zero among long-hydroperiod sites within a region, but not among short-hydroperiod sites within a region, where hydroperiod was measured as time since last marsh surface dry-down forcing fishes into local refuges. In 1996, all sites were in Hardy–Weinberg equilibrium. In 1999, we observed fewer heterozygotes than expected for most loci and sites suggesting a Wahlund effect arising from fish leaving areas that dried and mixing in deep-water refuges.