754 resultados para Zoige wetland
Resumo:
Four sediment cores were sampled from Lake Arari, located on Marajo Island at the mouth of the Amazon River. The island's vegetation cover is composed mainly of Amazon coastal forest, herbaceous and varzea vegetation. The integration of data on sedimentary structures, pollen, carbon and nitrogen isotope records, C/N ratios and radiocarbon ages allowed the identification of changes in vegetation and the sources of organic matter accumulated in the lake during the Holocene. The data indicate a relatively high flow energy, marine water influence and the presence of mangroves during the lagoon phase between 8990 and 8690 cal yr B.P. and 2310-2230 cal yr B.P. Between 2310 and 2230 cal yr B.P. and similar to 1000 cal yr B.P., the flow energy decreased and the mangroves were replaced by herbaceous vegetation following the decline in marine influence, likely due to the increase in freshwater river discharge. During the last 1000 years, Lake Arari was established in association with the expansion of herbaceous vegetation and the dominance of freshwater algae. (C) 2011 Elsevier BM. All rights reserved.
Resumo:
Oil spills are potential threats to the integrity of highly productive coastal wetlands, such as mangrove forests. In October 1983, a mangrove area of nearly 300 ha located on the southeastern coast of Brazil was impacted by a 3.5 million liter crude oil spill released by a broken pipeline. In order to assess the long-term effects of oil pollution on mangrove vegetation, we carried out a GIS-based multitemporal analysis of aerial photographs of the years 1962, 1994, 2000 and 2003. Photointerpretation, visual classification, class quantification, ground-truth and vegetation structure data were combined to evaluate the oil impact. Before the spill, the mangroves exhibited a homogeneous canopy and well-developed stands. More than ten years after the spill, the mangrove vegetation exhibited three distinct zones reflecting the long-term effects of the oil pollution. The most impacted zone (10.5 ha) presented dead trees, exposed substrate and recovering stands with reduced structural development. We suggest that the distinct impact and recovery zones reflect the spatial variability of oil removal rates in the mangrove forest. This study identifies the multitemporal analysis of aerial photographs as a useful tool for assessing a system's capacity for recovery and monitoring the long-term residual effects of pollutants on vegetation dynamics, thus giving support to mangrove forest management and conservation.
Resumo:
The identification of the factors behind the distribution of plant communities in patched habitats may prove useful towards better understanding how ecosystems function. Plant assemblages are especially important for wetland productivity and provide food and habitat to animals. The present study analyses the distribution of a metacommunity of helophytes and phreatophytes in a wetland complex in oder to identify the effects of habitat configuration on the colonisation process. Ponds with wide vegetated shores and a short distance to a big (> 10 ha) wetland, had higher species richness. The average percentage of surface covered by each species in all the wetlands correlated positively with the number of patches occupied by that species. Moreover, the community presented a nested pattern (species-poor patches were subsets of species-rich patches), and this pattern came about by selective extinction and colonisation processes. We also detected the presence of some idiosyncratic species that did not follow nestedness. Conservation managers should attempt to maximise the vegetated shore width and to reduce the degree of isolation to enhance species richness. Furthermore, a single large and poorly isolated reserve may have the highest level of biodiversity in emergent vegetation species in this wetland complex, however, the particular ecological requirements of idiosyncratic species should also be taken into account when managing this type of community.
Resumo:
Oil spills are potential threats to the integrity of highly productive coastal wetlands, such as mangrove forests. In October 1983, a mangrove area of nearly 300 ha located on the southeastern coast of Brazil was impacted by a 3.5 million liter crude oil spill released by a broken pipeline. In order to assess the long-term effects of oil pollution on mangrove vegetation, we carried out a GIS-based multitemporal analysis of aerial photographs of the years 1962, 1994, 2000 and 2003. Photointerpretation, visual classification, class quantification, ground-truth and vegetation structure data were combined to evaluate the oil impact. Before the spill, the mangroves exhibited a homogeneous canopy and well-developed stands. More than ten years after the spill, the mangrove vegetation exhibited three distinct zones reflecting the long-term effects of the oil pollution. The most impacted zone (10.5 ha) presented dead trees, exposed substrate and recovering stands with reduced structural development. We suggest that the distinct impact and recovery zones reflect the spatial variability of oil removal rates in the mangrove forest. This study identifies the multitemporal analysis of aerial photographs as a useful tool for assessing a system's capacity for recovery and monitoring the long-term residual effects of pollutants on vegetation dynamics, thus giving support to mangrove forest management and conservation.
Resumo:
In this report it was designed an innovative satellite-based monitoring approach applied on the Iraqi Marshlands to survey the extent and distribution of marshland re-flooding and assess the development of wetland vegetation cover. The study, conducted in collaboration with MEEO Srl , makes use of images collected from the sensor (A)ATSR onboard ESA ENVISAT Satellite to collect data at multi-temporal scales and an analysis was adopted to observe the evolution of marshland re-flooding. The methodology uses a multi-temporal pixel-based approach based on classification maps produced by the classification tool SOIL MAPPER ®. The catalogue of the classification maps is available as web service through the Service Support Environment Portal (SSE, supported by ESA). The inundation of the Iraqi marshlands, which has been continuous since April 2003, is characterized by a high degree of variability, ad-hoc interventions and uncertainty. Given the security constraints and vastness of the Iraqi marshlands, as well as cost-effectiveness considerations, satellite remote sensing was the only viable tool to observe the changes taking place on a continuous basis. The proposed system (ALCS – AATSR LAND CLASSIFICATION SYSTEM) avoids the direct use of the (A)ATSR images and foresees the application of LULCC evolution models directly to „stock‟ of classified maps. This approach is made possible by the availability of a 13 year classified image database, conceived and implemented in the CARD project (http://earth.esa.int/rtd/Projects/#CARD).The approach here presented evolves toward an innovative, efficient and fast method to exploit the potentiality of multi-temporal LULCC analysis of (A)ATSR images. The two main objectives of this work are both linked to a sort of assessment: the first is to assessing the ability of modeling with the web-application ALCS using image-based AATSR classified with SOIL MAPPER ® and the second is to evaluate the magnitude, the character and the extension of wetland rehabilitation.
Resumo:
Methane is the most abundant reduced organic compound in the atmosphere. As the strongest known long-lived greenhouse gas after water vapour and carbon dioxide methane perturbs the radiation balance of Earth’s atmosphere. The abiotic formation of methane requires ultraviolet irradiation of organic matter or takes place in locations with high temperature and/or pressure, e.g. during biomass burning or serpentinisation of olivine, under hydrothermal conditions in the oceans deep or below tectonic plates. The biotic methane formation was traditionally thought to be formed only by methanogens under strictly anaerobic conditions, such as in wetland soils, rice paddies and agricultural waste. rnIn this dissertation several chemical pathways are described which lead to the formation of methane under aerobic and ambient conditions. Organic precursor compounds such as ascorbic acid and methionine were shown to release methane in a chemical system including ferrihydrite and hydrogen peroxide in aquatic solution. Moreover, it was shown by using stable carbon isotope labelling experiments that the thio-methyl group of methionine was the carbon precursor for the methane produced. Methionine, a compound that plays an important role in transmethylation processes in plants was also applied to living plants. Stable carbon isotope labelling experiments clearly verified that methionine acts as a precursor compound for the methane from plants. Further experiments in which the electron transport chain was inhibited suggest that the methane generation is located in the mitochondria of the plants. The abiotic formation of methane was shown for several soil samples. Important environmental parameter such as temperature, UV irradiation and moisture were identified to control methane formation. The organic content of the sample as well as water and hydrogen peroxide might also play a major role in the formation of methane from soils. Based on these results a novel scheme was developed that includes both biotic and chemical sources of methane in the pedosphere.rn
Resumo:
Natural methane (CH4) emissions from wet ecosystems are an important part of today's global CH4 budget. Climate affects the exchange of CH4 between ecosystems and the atmosphere by influencing CH4 production, oxidation, and transport in the soil. The net CH4 exchange depends on ecosystem hydrology, soil and vegetation characteristics. Here, the LPJ-WHyMe global dynamical vegetation model is used to simulate global net CH4 emissions for different ecosystems: northern peatlands (45°–90° N), naturally inundated wetlands (60° S–45° N), rice agriculture and wet mineral soils. Mineral soils are a potential CH4 sink, but can also be a source with the direction of the net exchange depending on soil moisture content. The geographical and seasonal distributions are evaluated against multi-dimensional atmospheric inversions for 2003–2005, using two independent four-dimensional variational assimilation systems. The atmospheric inversions are constrained by the atmospheric CH4 observations of the SCIAMACHY satellite instrument and global surface networks. Compared to LPJ-WHyMe the inversions result in a~significant reduction in the emissions from northern peatlands and suggest that LPJ-WHyMe maximum annual emissions peak about one month late. The inversions do not put strong constraints on the division of sources between inundated wetlands and wet mineral soils in the tropics. Based on the inversion results we diagnose model parameters in LPJ-WHyMe and simulate the surface exchange of CH4 over the period 1990–2008. Over the whole period we infer an increase of global ecosystem CH4 emissions of +1.11 Tg CH4 yr−1, not considering potential additional changes in wetland extent. The increase in simulated CH4 emissions is attributed to enhanced soil respiration resulting from the observed rise in land temperature and in atmospheric carbon dioxide that were used as input. The long-term decline of the atmospheric CH4 growth rate from 1990 to 2006 cannot be fully explained with the simulated ecosystem emissions. However, these emissions show an increasing trend of +3.62 Tg CH4 yr−1 over 2005–2008 which can partly explain the renewed increase in atmospheric CH4 concentration during recent years.
Resumo:
In 2005, Wetland Studies and Solutions, Inc. (WSSI) installed an extensive Low Impact Development (LID) stormwater management system on their new office site in Gainesville, Virginia. The 4-acre site is serviced by a network of LID components: permeable pavements (two proprietary and one gravel type), bioretention cell / rain garden, green roof, vegetated swale, rainwater harvesting and drip irrigation, and slow-release underground detention. The site consists of heavy clay soils, and the LID components are mostly integrated by a series of underdrain pipes. A comprehensive monitoring system has been designed and installed to measure hydrologic performance throughout the LID, underdrained network. The monitoring system measures flows into and out of each LID component independently while concurrently monitoring rainfall events. A sensitivity analysis and laboratory calibration has been performed on the flow measurement system. Field data has been evaluated to determine the hydrologic performance of the LID features. Finally, hydrologic models amenable to compact, underdrained LID sites have been reviewed and recommended for future modeling and design.
Resumo:
Forested wetlands throughout the world are valuable habitats; especially in relatively species-poor northern regions, they can be considered biological hotspots. Unfortunately, these areas have been degraded and destroyed. In recent years, however, the biological importance of wetlands has been increasingly recognized, resulting in the desire to restore disturbed habitats or create in place of destroyed ones. Restoration work is taking place across the globe in a diversity of wetland types, and research must be conducted to determine successful techniques. As a result, two studies of the effects of wetland restoration and creation were conducted in forested wetlands in northern Michigan and southern Finland. In North America, northern white-cedar wetlands have been declining in area, despite attempts to regenerate them. Improved methods for successfully establishing northern white-cedar are needed; as a result, the target of the first study was to determine if creating microtopography could be beneficial for white-cedar recruitment and growth. In northern Europe, spruce swamp forests have become a threatened ecosystem due to extensive drainage for forestry. As part of the restoration of these habitats, i.e. rewetting through ditch blocking, Sphagnum mosses are considered to be a critical element to re-establish, and an in-depth analysis of how Sphagnum is responding to restoration in spruce swamp forests has not been previously done. As a result, the aim of the second study was to investigate the ecophysiological functioning of Sphagnum and feather mosses across a gradient of pristine, drained, and restored boreal spruce swamp forests.
Resumo:
The goal of this project was to investigate the influence of a large inland lake on adjacent coastal freshwater peatlands. The specific aim was to determine the source of groundwater for three differently formed peatlands located on the southern shore of Lake Superior. The groundwater study was conducted at Bete Grise, a peatland complex in a dune-swale system; Pequaming, a peatland developed in the swale of a tombolo; and Lightfoot Bay, a peatland developed in a barrier beach wetland complex. To determine the source of groundwater in the peatlands, transects of six groundwater monitoring wells were established at each study site, covering distinctly different vegetation zones. At Pequaming and Lightfoot Bay the transects monitored two vegetation zones: transition zone from upland and open fen. At Bete Grise, the transects monitored dunes and swales. Additionally, at all three sites, upland groundwater was monitored using three wells that were installed into the adjacent upland forest. Biweekly measurements of well water pH and specific conductance were carried out from May to October of 2010. At each site, vegetation cover, peat depths and surface elevations were determined and compared to Lake Superior water levels. From June 14 – 17, July 20 – 21 and September 10 – 12, stable isotopes of oxygen (18O/16O) ratios were measured in all the wells and for Lake Superior water. A mixing model was used to estimate the percentage of lake water influencing each site based on the oxygen isotope ratios. During the sampling period, groundwater at all three sites was supported primarily by upland groundwater. Pequaming was approximately 80 % upland groundwater supported and up to 20 % Lake water supported in the uppermost 1 m layer of peat column of the transition zone and open fen. Bete Grise and Lightfoot Bay were 100 % upland groundwater supported throughout the season. The height of Lake Superior was near typical levels in 2010. In years when the lake level is higher, Lake water could intrude into the adjacent peatlands. However, under typical hydrologic conditions, these coastal peatlands are primarily supported by upland groundwater.
Resumo:
Riparian zones are dynamic, transitional ecosystems between aquatic and terrestrial ecosystems with well defined vegetation and soil characteristics. Development of an all-encompassing definition for riparian ecotones, because of their high variability, is challenging. However, there are two primary factors that all riparian ecotones are dependent on: the watercourse and its associated floodplain. Previous approaches to riparian boundary delineation have utilized fixed width buffers, but this methodology has proven to be inadequate as it only takes the watercourse into consideration and ignores critical geomorphology, associated vegetation and soil characteristics. Our approach offers advantages over other previously used methods by utilizing: the geospatial modeling capabilities of ArcMap GIS; a better sampling technique along the water course that can distinguish the 50-year flood plain, which is the optimal hydrologic descriptor of riparian ecotones; the Soil Survey Database (SSURGO) and National Wetland Inventory (NWI) databases to distinguish contiguous areas beyond the 50-year plain; and land use/cover characteristics associated with the delineated riparian zones. The model utilizes spatial data readily available from Federal and State agencies and geospatial clearinghouses. An accuracy assessment was performed to assess the impact of varying the 50-year flood height, changing the DEM spatial resolution (1, 3, 5 and 10m), and positional inaccuracies with the National Hydrography Dataset (NHD) streams layer on the boundary placement of the delineated variable width riparian ecotones area. The result of this study is a robust and automated GIS based model attached to ESRI ArcMap software to delineate and classify variable-width riparian ecotones.
Resumo:
Reed canary grass (Phalaris arundinacea L.) is an invasive species originally from Europe that has now expanded to a large range within the United States. Reed canary grass possesses a number of traits that allow it to thrive in a wide range of environmental factors, including high rates of sedimentation, bouts of flooding, and high levels of nutrient inputs. Therefore, the goals of our study were to determine if 1) certain types of wetland were more susceptible to Reed canary grass invasion, and 2) disturbances facilitated Reed canary grass invasion. This study was conducted within the Keweenaw Bay Indian Community reservation in the Upper Peninsula of Michigan, in Baraga County. We selected 28 wetlands for analysis. At each wetland, we identified and sampled distinct vegetative communities and their corresponding environmental attributes, which included water table depth, pH, conductivity, calcium and magnesium concentrations, and percent organic matter. Disturbances at each site were catalogued and their severity estimated with the aid of aerial photos. A GIS dataset containing information about the location of Reed canary grass within the study wetlands, the surrounding roads and the level of roadside Reed canary grass invasion was also developed. In all, 287 plant species were identified and classified into 16 communities, which were then further grouped into three broad groupings of wetlands: nonforested graminoid, Sphagnum peatlands, and forested wetlands. The two most common disturbances identified were roads and off-road recreation trails, both occurring at 23 of the 28 sites. Logging activity surrounding the wetlands was the next most common disturbance and was found at 18 of the sites. Occurrence of Reed canary grass was most common in the non-forested graminoid communities. Reed canary grass was very infrequent in forested wetlands, and almost never occurred in the Sphagnum peatlands. Disturbance intensity was the most significant environmental factor in explaining Reed canary grass occurrence within wetlands. Statistically significant relationships were identified at distances of 1000 m, 500 m, and 250 m from studied wetlands, between the level of road development and the severity of Reed canary grass invasion along roadsides. Further analysis revealed a significant relationship between roadside Reed canary grass populations and the level of road development (e.g. paved, graded, and ungraded).
Resumo:
Peatlands cover only ~3% of the global land area, but store ~30% of the worlds' soil carbon. There are many different peat types that store different amounts of carbon. Most inventories of carbon storage in northern peatlands have been conducted in the expansive Sphagnum dominated peatlands. Although, northern white cedar peatlands (NW cedar, Thuja occidentalis L.) are also one of the most common peatland types in the Great Lakes Region, occupying more than 2 million hectares. NW cedar swamps are understudied, due in part to the difficulties in collection methods. General lack of rapid and consistent sampling methods has also contributed in a lack of carbon stock quantification for many peatlands. The main objective of this thesis is to quantify: 1) to evaluate peat sampling methods 2) the amount of C-stored and the rates of long-term carbon accumulation in NW cedar peatlands. We sampled 38 peatlands separated into four categories (black ash, NW cedar swamp, sedge, and Sphagnum) during the summers of 2011/2012 across northern MN and the Upper Peninsula of MI. Basal dates of peat indicate that cedar peatlands were between 1970-7790 years old. Cedar peatlands are generally shallower than Sphagnum peat, but due to their higher bulk density, hold similar amounts of carbon with our sites averaging ~800 MgC ha-1. We estimate that NW cedar peatlands store over 1.7 Gt of carbon in the Great Lakes Region. Each of the six methods evaluated had a different level of accuracy and requires varying levels of effort and resources. The depth only method and intermittent sampling method were the most accurate methods of peatland sampling.
Resumo:
Recent observations and model simulations have highlighted the sensitivity of the forest - tundra ecotone to climatic forcing. In contrast, paleoecological studies have not provided evidence of tree-line fluctuations in response to Holocene climatic changes in Alaska, suggesting that the forest - tundra boundary in certain areas may be relatively stable at multicentennial to millennial time scales. We conducted a multiproxy study of sediment cores from an Alaskan lake near the altitudinal limits of key boreal-forest species. Paleoecological data were compared with independent climatic reconstructions to assess ecosystem responses of the forest - tundra boundary to Little Ice Age (LIA) climatic. uctuations. Pollen, diatom, charcoal, macrofossil, and magnetic analyses provide the first continuous record of vegetation -. re - climate interactions at decadal to centennial time scales during the past 700 years from southern Alaska. Boreal-forest diebacks characterized by declines of Picea mariana, P. glauca, and tree Betula occurred during the LIA ( AD 1500 - 1800), whereas shrubs ( Alnus viridis, Betula glandulosa/nana) and herbaceous taxa (Epilobium, Aconitum) expanded. Marked increases in charcoal abundance and changes in magnetic properties suggest increases in. re importance and soil erosion during the same period. In addition, the conspicuous reduction or disappearance of certain aquatic ( e. g., Isoetes, Nuphar, Pediastrum) and wetland ( Sphagnum) plants and major shifts in diatom assemblages suggest pronounced lake-level. uctuations and rapid ecosystem reorganization in response to LIA climatic deterioration. Our results imply that temperature shifts of 1 - 2 degrees C, when accompanied by major changes in moisture balance, can greatly alter high-altitudinal terrestrial, wetland, and aquatic ecosystems, including conversion between boreal-forest tree line and tundra. The climatic and ecosystem variations in our study area appear to be coherent with changes in solar irradiance, suggesting that changes in solar activity contributed to the environmental instability of the past 700 years.
Resumo:
Methane is an important greenhouse gas, responsible for about 20 of the warming induced by long-lived greenhouse gases since pre-industrial times. By reacting with hydroxyl radicals, methane reduces the oxidizing capacity of the atmosphere and generates ozone in the troposphere. Although most sources and sinks of methane have been identified, their relative contributions to atmospheric methane levels are highly uncertain. As such, the factors responsible for the observed stabilization of atmospheric methane levels in the early 2000s, and the renewed rise after 2006, remain unclear. Here, we construct decadal budgets for methane sources and sinks between 1980 and 2010, using a combination of atmospheric measurements and results from chemical transport models, ecosystem models, climate chemistry models and inventories of anthropogenic emissions. The resultant budgets suggest that data-driven approaches and ecosystem models overestimate total natural emissions. We build three contrasting emission scenarios � which differ in fossil fuel and microbial emissions � to explain the decadal variability in atmospheric methane levels detected, here and in previous studies, since 1985. Although uncertainties in emission trends do not allow definitive conclusions to be drawn, we show that the observed stabilization of methane levels between 1999 and 2006 can potentially be explained by decreasing-to-stable fossil fuel emissions, combined with stable-to-increasing microbial emissions. We show that a rise in natural wetland emissions and fossil fuel emissions probably accounts for the renewed increase in global methane levels after 2006, although the relative contribution of these two sources remains uncertain.