939 resultados para Yield signs.
Resumo:
There is little consensus on how agriculture will meet future food demands sustainably. Soils and their biota play a crucial role by mediating ecosystem services that support agricultural productivity. However, a multitude of site-specific environmental factors and management practices interact to affect the ability of soil biota to perform vital functions, confounding the interpretation of results from experimental approaches. Insights can be gained through models, which integrate the physiological, biological and ecological mechanisms underpinning soil functions. We present a powerful modelling approach for predicting how agricultural management practices (pesticide applications and tillage) affect soil functioning through earthworm populations. By combining energy budgets and individual-based simulation models, and integrating key behavioural and ecological drivers, we accurately predict population responses to pesticide applications in different climatic conditions. We use the model to analyse the ecological consequences of different weed management practices. Our results demonstrate that an important link between agricultural management (herbicide applications and zero, reduced and conventional tillage) and earthworms is the maintenance of soil organic matter (SOM). We show how zero and reduced tillage practices can increase crop yields while preserving natural ecosystem functions. This demonstrates how management practices which aim to sustain agricultural productivity should account for their effects on earthworm populations, as their proliferation stimulates agricultural productivity. Synthesis and applications. Our results indicate that conventional tillage practices have longer term effects on soil biota than pesticide control, if the pesticide has a short dissipation time. The risk of earthworm populations becoming exposed to toxic pesticides will be reduced under dry soil conditions. Similarly, an increase in soil organic matter could increase the recovery rate of earthworm populations. However, effects are not necessarily additive and the impact of different management practices on earthworms depends on their timing and the prevailing environmental conditions. Our model can be used to determine which combinations of crop management practices and climatic conditions pose least overall risk to earthworm populations. Linking our model mechanistically to crop yield models would aid the optimization of crop management systems by exploring the trade-off between different ecosystem services.
Resumo:
Fossil fuel combustion and deforestation have resulted in a rapid increase in atmospheric [CO2] since the 1950’s, and it will reach about 550 μmol mol−1 in 2050. Field experiments were conducted at the Free-air CO2 Enrichment facility in Beijing, China. Winter wheat was grown to maturity under elevated [CO2] (550 ± 17 μmol mol−1) and ambient [CO2] (415 ± 16 μmol mol−1), with high nitrogen (N) supply (HN, 170 kg N ha−1) and low nitrogen supply (LN, 100 kg N ha−1) for three growing seasons from 2007 to 2010. Elevated [CO2] increased wheat grain yield by 11.4% across the three years. [CO2]-induced yield enhancements were 10.8% and 11.9% under low N and high N supply, respectively. Nitrogen accumulation under elevated [CO2] was increased by 12.9% and 9.2% at the half-way anthesis and ripening stage across three years, respectively. Winter wheat had higher nitrogen demand under elevated [CO2] than ambient [CO2], and grain yield had a stronger correlation with plant N uptake after anthesis than before anthesis at high [CO2]. Our results suggest that regulating on the N application rate and time, is likely important for sustainable grain production under future CO2 climate.
Resumo:
Climate has been changing in the last fifty years in China and will continue to change regardless any efforts for mitigation. Agriculture is a climate-dependent activity and highly sensitive to climate changes and climate variability. Understanding the interactions between climate change and agricultural production is essential for society stable development of China. The first mission is to fully understand how to predict future climate and link it with agriculture production system. In this paper, recent studies both domestic and international are reviewed in order to provide an overall image of the progress in climate change researches. The methods for climate change scenarios construction are introduced. The pivotal techniques linking crop model and climate models are systematically assessed and climate change impacts on Chinese crops yield among model results are summarized. The study found that simulated productions of grain crop inherit uncertainty from using different climate models, emission scenarios and the crops simulation models. Moreover, studies have different spatial resolutions, and methods for general circulation model (GCM) downscaling which increase the uncertainty for regional impacts assessment. However, the magnitude of change in crop production due to climate change (at 700 ppm CO2 eq correct) appears within ±10% for China in these assessments. In most literatures, the three cereal crop yields showed decline under climate change scenarios and only wheat in some region showed increase. Finally, the paper points out several gaps in current researches which need more studies to shorten the distance for objective recognizing the impacts of climate change on crops. The uncertainty for crop yield projection is associated with climate change scenarios, CO2 fertilization effects and adaptation options. Therefore, more studies on the fields such as free air CO2 enrichment experiment and practical adaptations implemented need to be carried out
Jersey milk suitability for Cheddar cheese production: process, yield, quality and financial impacts
Resumo:
The aim of this study was to first evaluate the benefits of including Jersey milk into Holstein-Friesian milk on the Cheddar cheese making process and secondly, using the data gathered, identify the effects and relative importance of a wide range of milk components on milk coagulation properties and the cheese making process. Blending Jersey and Holstein-Friesian milk led to quadratic trends on the size of casein micelle and fat globule and on coagulation properties. However this was not found to affect the cheese making process. Including Jersey milk was found, on a pilot scale, to increase cheese yield (up to + 35 %) but it did not affect cheese quality, which was defined as compliance with the legal requirements of cheese composition, cheese texture, colour and grading scores. Profitability increased linearly with the inclusion of Jersey milk (up to 11.18 p£ L-1 of milk). The commercial trials supported the pilot plant findings, demonstrating that including Jersey milk increased cheese yield without having a negative impact on cheese quality, despite the inherent challenges of scaling up such a process commercially. The successful use of a large array of milk components to model the cheese making process challenged the commonly accepted view that fat, protein and casein content and protein to fat ratio are the main contributors to the cheese making process as other components such as the size of casein micelle and fat globule were found to also play a key role with small casein micelle and large fat globule reducing coagulation time, improving curd firmness, fat recovery and influencing cheese moisture and fat content. The findings of this thesis indicated that milk suitability for Cheddar making could be improved by the inclusion of Jersey milk and that more compositional factors need to be taken into account when judging milk suitability.
Resumo:
Global food security, particularly crop fertilization and yield production, is threatened by heat waves that are projected to increase in frequency and magnitude with climate change. Effects of heat stress on the fertilization of insect-pollinated plants are not well understood, but experiments conducted primarily in self-pollinated crops, such as wheat, show that transfer of fertile pollen may recover yield following stress. We hypothesized that in the partially pollinator-dependent crop, faba bean (Vicia faba L.), insect pollination would elicit similar yield recovery following heat stress. We exposed potted faba bean plants to heat stress for 5 days during floral development and anthesis. Temperature treatments were representative of heat waves projected in the UK for the period 2021-2050 and onwards. Following temperature treatments, plants were distributed in flight cages and either pollinated by domesticated Bombus terrestris colonies or received no insect pollination. Yield loss due to heat stress at 30°C was greater in plants excluded from pollinators (15%) compared to those with bumblebee pollination (2.5%). Thus, the pollinator dependency of faba bean yield was 16% at control temperatures (18 to 26°C) and extreme stress (34°C), but was 53% following intermediate heat stress at 30°C. These findings provide the first evidence that the pollinator dependency of crops can be modified by heat stress, and suggest that insect pollination may become more important in crop production as the probability of heat waves increases.
Investigation and optimization of parameters affecting the multiply charged ion yield in AP-MALDI MS
Resumo:
Liquid matrix-assisted laser desorption/ionization (MALDI) allows the generation of predominantly multiply charged ions in atmospheric pressure (AP) MALDI ion sources for mass spectrometry (MS) analysis. The charge state distribution of the generated ions and the efficiency of the ion source in generating such ions crucially depend on the desolvation regime of the MALDI plume after desorption in the AP-tovacuum inlet. Both high temperature and a flow regime with increased residence time of the desorbed plume in the desolvation region promote the generation of multiply charged ions. Without such measures the application of an electric ion extraction field significantly increases the ion signal intensity of singly charged species while the detection of multiply charged species is less dependent on the extraction field. In general, optimization of high temperature application facilitates the predominant formation and detection of multiply charged compared to singly charged ion species. In this study an experimental setup and optimization strategy is described for liquid AP-MALDI MS which improves the ionization effi- ciency of selected ion species up to 14 times. In combination with ion mobility separation, the method allows the detection of multiply charged peptide and protein ions for analyte solution concentrations as low as 2 fmol/lL (0.5 lL, i.e. 1 fmol, deposited on the target) with very low sample consumption in the low nL-range.
Resumo:
Organic fertilizers based on seaweed extract potentially have beneficial effects on many crop plants. Herewe investigate the impact of organic fertilizer on Rosmarinus officinalis measured by both yield and oilquality. Plants grown in a temperature-controlled greenhouse with a natural photoperiod and a controlledirrigation system were treated with seaweed fertilizer and an inorganic fertilizer of matching mineralcomposition but with no organic content. Treatments were either by spraying on to the foliage or wateringdirect to the compost. The essential oil was extracted by hydro-distillation with a Clevenger apparatusand analysed by gas-chromatography mass-spectrometry (GC–MS) and NMR. The chemical composi-tions of the plants were compared, and qualitative differences were found between fertilizer treatmentsand application methods. Thus sprayed seaweed fertilizer showed a significantly higher percentage of�-pinene, �-phellandrene, �-terpinene (monoterpenes) and 3-methylenecycloheptene than other treat-ments. Italicene, �-bisabolol (sesquiterpenes), �-thujene, and E-isocitral (monoterpenes) occurred insignificantly higher percentages for plants watered with the seaweed extract. Each was significantly dif-ferent to the inorganic fertilizer and to controls. The seaweed treatments caused a significant increasein oil amount and leaf area as compared with both inorganic treatments and the control regardless ofapplication method.
Resumo:
Background and Aims Root traits can be selected for crop improvement. Techniques such as soil excavations can be used to screen root traits in the field, but are limited to genotypes that are well-adapted to field conditions. The aim of this study was to compare a low-cost, high-throughput root phenotyping (HTP) technique in a controlled environment with field performance, using oilseed rape (OSR; Brassica napus) varieties. Methods Primary root length (PRL), lateral root length and lateral root density (LRD) were measured on 14-d-old seedlings of elite OSR varieties (n = 32) using a ‘pouch and wick’ HTP system (∼40 replicates). Six field experiments were conducted using the same varieties at two UK sites each year for 3 years. Plants were excavated at the 6- to 8-leaf stage for general vigour assessments of roots and shoots in all six experiments, and final seed yield was determined. Leaves were sampled for mineral composition from one of the field experiments. Key Results Seedling PRL in the HTP system correlated with seed yield in four out of six (r = 0·50, 0·50, 0·33, 0·49; P < 0·05) and with emergence in three out of five (r = 0·59, 0·22, 0·49; P < 0·05) field experiments. Seedling LRD correlated positively with leaf concentrations of some minerals, e.g. calcium (r = 0·46; P < 0·01) and zinc (r = 0·58; P < 0·001), but did not correlate with emergence, general early vigour or yield in the field. Conclusions Associations between PRL and field performance are generally related to early vigour. These root traits might therefore be of limited additional selection value, given that vigour can be measured easily on shoots/canopies. In contrast, LRD cannot be assessed easily in the field and, if LRD can improve nutrient uptake, then it may be possible to use HTP systems to screen this trait in both elite and more genetically diverse, non-field-adapted OSR.
Resumo:
Different extraction processes were employed to extract the polyphenolic compounds from pitanga (Eugenia uniflora L) leaves: a one-step process using water, ethanol or supercritical CO(2) as solvents, and a two-step process using supercritical CO(2) followed by either water or ethanol. The total polyphenolic compounds, total flavonoids and antioxidant activity were determined in all the extracts obtained. The process performance was evaluated with respect to three variables: global extraction yield, concentration and yield of both polyphenols and flavonoids in the extracts. For the one-step extraction, the results showed that the extraction yield increased with solvent polarity. For the two-step process, the results suggested that water was more efficient in extracting the phenolic compounds from E. uniflora when the matrix was previously extracted with scCO(2). With respect to the antioxidant activity, the ethanolic extracts obtained from both processes, using either the DPPH radical scavenging method or the beta-carotene bleaching method, presented high antioxidant activities. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This work evaluated the effect of pressure and temperature on yield and characteristic flavour intensity of Brazilian cherry (Eugenia uniflora L) extracts obtained by supercritical CO(2) using response surface analysis, which is a simple and efficient method for first inquiries. A complete central composite 2(2) factorial experimental design was applied using temperature (ranging from 40 to 60 degrees C) and pressure (from 150 to 250 bar) as independent variables. A second order model proved to be predictive (p <= 0.05) for the extract yield as affected by pressure and temperature, with better results being achieved at the central point (200 bar and 50 degrees C). For the flavour intensity, a first order model proved to be predictive (p <= 0.05) showing the influence of temperature. Greater characteristic flavour intensity in extracts was obtained for relatively high temperature (> 50 degrees C), Therefore, as far as Brazilian cherry is concerned, optimum conditions for achieving higher extract yield do not necessarily coincide to those for obtaining richer flavour intensity. Industrial relevance: Supercritical fluid extraction (SFE) is an emerging clean technology through which one may obtain extracts free from organic solvents. Extract yields from natural products for applications in food, pharmaceutical and cosmetic industries have been widely disseminated in the literature. Accordingly, two lines of research have industrial relevance, namely, (i) operational optimization studies for high SFE yields and (ii) investigation on important properties extracts are expected to present (so as to define their prospective industrial application). Specifically, this work studied the optimization of SFE process to obtain extracts from a tropical fruit showing high intensity of its characteristic flavour, aiming at promoting its application in natural aroma enrichment of processed foods. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Annona (Annonaceae) is an important source of fruits in the Brazilian Cerrado and the Amazon Rainforest. Some Annona species are widely commercialized as fresh fruit or as frozen pulp. Seeds are accustomedly discarded. Our main goal was to analyze fatty acids profile from seeds of A. crassiflora and A. coriacea from Cerrado, A. montana from Amazon Forest, and three cultivars (A. cherimola cv. Madeira, A. cherimola x A. squamosa cv. Pink`s Mammonth and A. cherimola x A. squamosa cv. Gefner). The total oil yield ranged between 20 and 42% by weight of dry mass. The A cherimola x A. squamosa cv. Gefner has significantly higher total lipid yield than all other samples. 100 g of fruit of this species present 6-8 g of seeds. Considering the fruit production of Chile (over 221 ton of fruits/year), more than 1300 ton of seed/year could be obtained, which could provide at least 200 ton of seed oil. Oleic acid was predominant for most samples, but for A. montana linoleic acid was the most abundant FA. Phenotypic variation on FAME profile was observed. These new data are an urgent requirement for supporting conservation programs, mainly for Cerrado areas in Brazil.
Resumo:
With the aim of determining the genetic basis of metabolic regulation in tomato fruit, we constructed a detailed physical map of genomic regions spanning previously described metabolic quantitative trait loci of a Solanum pennellii introgression line population. Two genomic libraries from S. pennellii were screened with 104 colocated markers from five selected genomic regions, and a total of 614 bacterial artificial chromosome (BAC)/cosmids were identified as seed clones. Integration of sequence data with the genetic and physical maps of Solanum lycopersicum facilitated the anchoring of 374 of these BAC/cosmid clones. The analysis of this information resulted in a genome-wide map of a nondomesticated plant species and covers 10% of the physical distance of the selected regions corresponding to approximately 1% of the wild tomato genome. Comparative analyses revealed that S. pennellii and domesticated tomato genomes can be considered as largely colinear. A total of 1,238,705 bp from both BAC/cosmid ends and nine large insert clones were sequenced, annotated, and functionally categorized. The sequence data allowed the evaluation of the level of polymorphism between the wild and cultivated tomato species. An exhaustive microsynteny analysis allowed us to estimate the divergence date of S. pennellii and S. lycopersicum at 2.7 million years ago. The combined results serve as a reference for comparative studies both at the macrosyntenic and microsyntenic levels. They also provide a valuable tool for fine-mapping of quantitative trait loci in tomato. Furthermore, they will contribute to a deeper understanding of the regulatory factors underpinning metabolism and hence defining crop chemical composition.
Resumo:
We report on the measurements of the Shubnikov de Haas oscillations (SdH) in symmetrically doped AlxGa1-xAs double wells with different Al compositions in wells, which lead to the opposite signs of the electronic g-factor in each layer. Surprisingly, the spin splitting appears and collapses several times with increase in the magnetic field, We attribute such behaviour to the oscillations of the exchange-correlation term with Landau filling factor. (C) 2007 Elsevier B.V. All rights reserved.