990 resultados para X RADIATION
Resumo:
The oxidized form of purple acid phosphatase from pig allantoic fluid has been crystallized in the presence of phosphate using the hanging-drop technique. The crystals belong to the space group P2(1)2(1)2(1) and have unit-cell parameters a = 66.8, b = 70.3, c = 78.7 Angstrom. Diffraction data collected from a cryocooled crystal using a conventional X-ray source extend to 1.55 Angstrom resolution. A knowledge of the three-dimensional structure of mammalian purple acid phosphatase will aid in understanding the substrate specificity of the enzyme and will be important in the rational design of inhibitors, with potential in the treatment of bone diseases.
Resumo:
The radiolysis of nitrile rubbers with different acrylonitrile/butadiene composition and the homopolymers, poly(butadiene) (PBD) and poly(acrylonitrile) (PAN) has been investigated and compared with the photolysis of the same polymers. A significantly different mechanism of degradation was found for the two types of radiation. The results obtained by ESR, FTIR and measurements of soluble fractions of irradiated samples, indicated that the acrylonitrile units of the nitrile rubbers are more sensitive units to gamma-radiation, with the effects of irradiation increasing with the acrylonitrile content. The reactions observed were consumption of double bonds, crosslinking, and cyclization with the formation of conjugated double bonds. No chain-scission reactions were detected. In contrast to gamma-irradiation, the effects of photolysis were centred at the butadiene units, and increases in the acrylonitrile content resulted in a proportional decrease in the sensitivity of the copolymers. Crosslinking and chain scission were identified as the main effects of photolysis of NBR rubbers. (C) 1999 Society of Chemical Industry.
Resumo:
Purpose: The purpose of the study was to assess quantitative ultrasound (QUS) parameters in collegiate female gymnasts, a population whose training incorporates high-impact loading, which is particularly osteogenic, and to determine the discriminative capacity of this relatively new radiation-free technique compared with bone densitometry in a young healthy population. Methods: We studied 19 collegiate gymnasts and 23 healthy controls undergoing regular weight-bearing activity, matched for age (gymnasts 19.2 +/- 1.2, controls 19.9 +/- 1.6 yr) and body weight (gymnasts 56.7 +/- 3.7, controls 57.7 +/- 7.8 kg). QUS parameters of the calcaneus (broadband ultrasound attenuation (BUA), bone velocity (BV), and speed of sound (SOS)) were measured by a Walker Sonix UBA 575+. Bone mineral density (BMD; g.cm(-2)) of the lumbar spine, hip (Femoral neck, trochanter. Ward's triangle) and whole body was assessed by dual energy x-ray absorptiometry (DXA, Hologic QDR 1000/W). Data analysis included unpaired two-tailed Student's t-tests, analysis of variance, Pearson product-moment, and Spearman rank-order correlations. Results: Regional and whole body BMD of gymnasts was greater than controls (P < 0.001), with the difference being 7-28%. Average QUS parameters of the right and left calcaneus were also higher (P < 0.001) in the gymnasts. BUA, BV, and SOS were significantly (P < 0.001) correlated to each bone site with r = 0.54-0.79. Analysis of receiver operating characteristic (ROC) curves indicated no significant difference in sensitivity and specificity for QUS and DXA measures. Conclusions: These results indicate that QUS parameters of the calcaneus are higher in young women gymnasts compared to individuals who undergo regular weight-bearing activity and that QUS parameters are able to discriminate between these two groups in a similar manner as does regional and whole body BMD.
Resumo:
The bis(mu-hydroxo) complex [Cu-2(Me-2[9]aneN(2)S)(2)(OH)(2)](PF6)(2) (Me-2[9]aneN(2)S = N,N'-dimethyl-1-thia-4,7-diazacyclononane) results after reaction of [Cu(Me-2[9]aneN(2)S)(MeCN)] (PF6) with dioxygen at -78 degrees C in acetonitrile. The complex has been characterized by X-ray crystallography: orthorhombic, space group Pnma, with a 18.710(3), b 16.758(2), c 9.593(2) Angstrom, and Z = 4. The structure refined to a final R value of 0.051. The complex contains two copper(II) ions bridged by two hydroxo groups with Cu ... Cu 2.866(1) Angstrom. The solid-state magnetic susceptibility study reveals ferromagnetic coupling, the fitting parameters being J = +46+/-5 cm(-1), g = 2.01+/-0.01 and theta = -0.58+/-0.03 K. The frozen-solution e.p.r. spectrum in dimethyl sulfoxide is characteristic of a monomeric copper(II) ion (g(parallel to) 2.300, g(perpendicular to) 2.063; A(parallel to) 156.2 x 10(-4) cm(-1), A(perpendicular to) 9.0 x 10(-4) cm(-1)) with an N2O2 donor set. Thioether coordination to the copper(II) in solution is supported by the presence of an intense absorption assigned to a sigma(S)-->Cu-II LMCT transition at c. 34000 cm(-1). The single-crystal spectrum of [Cu-2(Me-2[9]aneN(2)S)(2)(OH)(2)] (PF6)(2) (273 K) reveals d-->d transitions at 14500 and 18300 cm(-1) and a weak pi(S)-->Cu-II charge-transfer band at approximately 25000 cm(-1).
Resumo:
OBJECTIVE: To use magnetic resonance imaging (MRI) to validate estimates of muscle and adipose tissue (AT) in lower limb sections obtained by dual-energy X-ray absorptiometry (DXA) modelling. DESIGN: MRI measurements were used as reference for validating limb muscle and AT estimates obtained by DXA models that assume fat-free soft tissue (FFST) comprised mainly muscle: model A accounted for bone hydration only; model B also applied constants for FFST in bone and skin and fat in muscle and AT; model C was as model B but allowing for variable fat in muscle and AT. SUBJECTS: Healthy men (n = 8) and women (n = 8), ages 41 - 62 y; mean (s.d.) body mass indices (BMIs) of 28.6 (5.4) kg/m(2) and 25.1 (5.4) kg/m2, respectively. MEASUREMENTS: MRI scans of the legs and whole body DXA scans were analysed for muscle and AT content of thigh (20 cm) and lower leg (10 cm) sections; 24 h creatinine excretion was measured. RESULTS: Model A overestimated thigh muscle volume (MRI mean, 2.3 l) substantially (bias 0.36 l), whereas model B underestimated it by only 2% (bias 0.045 l). Lower leg muscle (MRI mean, 0.6 l) was better predicted using model A (bias 0.04 l, 7% overestimate) than model B (bias 0.1 l, 17% underestimate). The 95% limits of agreement were high for these models (thigh,+/- 20%; lower leg,+/- 47%). Model C predictions were more discrepant than those of model B. There was generally less agreement between MRI and all DXA models for AT. Measurement variability was generally less for DXA measurements of FFST (coefficient of variation 0.7 - 1.8%) and fat (0.8 - 3.3%) than model B estimates of muscle (0.5-2.6%) and AT (3.3 - 6.8%), respectively. Despite strong relationships between them, muscle mass was overestimated by creatinine excretion with highly variable predictability. CONCLUSION: This study has shown the value of DXA models for assessment of muscle and AT in leg sections, but suggests the need to re-evaluate some of the assumptions upon which they are based.
Resumo:
The purpose of the present investigation was to gain an understanding of the nature of the carbon contamination on the surface of standard steel transmission electron spectroscopy (TEM) specimens, the effect of exposure of a clean specimen to normal laboratory air, and the efficacy of plasma-cleaning treatments. This knowledge is a necessary prerequisite to the development of appropriate specimen preparation and/or specimen cleaning methods. X-ray photoelectron spectroscopy in combination with argon ion beam profiling was used to characterize the specimen surfaces of X65 steel and 316 stainless steel. The only clean carbon-free surface obtained was that during argon etching of the sample in the surface analysis chamber. Any exposure of a previously cleaned sample to laboratory air resulted in a rapid carbon (hydrocarbon) contamination of the sample surface and the development of surface oxidation, Plasma cleaning with subsequent exposure of the specimen to the laboratory air also resulted in a carbon-contaminated surface. This suggests that procedures of preparation of TEM specimens of steels outside an ultrahigh vacuum chamber are unlikely to result in the lowering of contamination rates on specimens to levels where measurements for carbon in the grain boundaries are possible. What is needed is a cleaning system as an integral part of the specimen insertion system into the field-emission scanning transmission electron microscope. This cleaning could be carried out by argon ion etching. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
Plant performance is, at least partly, linked to the location of roots with respect to soil structure features and the micro-environment surrounding roots. Measurements of root distributions from intact samples, using optical microscopy and field tracings have been partially successful but are imprecise and labour-intensive. Theoretically, X-ray computed micro-tomography represents an ideal solution for non-invasive imaging of plant roots and soil structure. However, before it becomes fast enough and affordable or easily accessible, there is still a need for a diagnostic tool to investigate root/soil interplay. Here, a method for detection of undisturbed plant roots and their immediate physical environment is presented. X-ray absorption and phase contrast imaging are combined to produce projection images of soil sections from which root distributions and soil structure can be analyzed. The clarity of roots on the X-ray film is sufficient to allow manual tracing on an acetate sheet fixed over the film. In its current version, the method suffers limitations mainly related to (i) the degree of subjectivity associated with manual tracing and (ii) the difficulty of separating live and dead roots. The method represents a simple and relatively inexpensive way to detect and quantify roots from intact samples and has scope for further improvements. In this paper, the main steps of the method, sampling, image acquisition and image processing are documented. The potential use of the method in an agronomic perspective is illustrated using surface and sub-surface soil samples from a controlled wheat trial. Quantitative characterization of root attributes, e.g. radius, length density, branching intensity and the complex interplay between roots and soil structure, is presented and discussed.
Resumo:
The radiation chemistry of poly(dimethyl siloxane) has been investigated with respect to identification of the nature of the small molecule chain scission products. Low molecular weight linear and cyclic products have been identified through the use of Si-29 solution NMR, GPC and MALDI-TOF mass spectrometry. It has been suggested that the low molecular weight cyclic products are formed by back-biting depolymerization reactions.
Resumo:
Thirty steers were used in two pen experiments (Expts 1 and 2). and 27 of these in a third (Expt 3), to quantify their responses of hay intake, rumen ammonia nitrogen (RAN) concentrations, and liveweight to inputs of rumen soluble nitrogen (urea) and rumen undegradable protein (formaldehyde-treated casein; F-casein) when added to a basal diet of low quality hays. The hays were made From unimproved native pastures typical of those grazed by cattle in the subtropics of Australia and contained 7.8 g N/kg dry matter (DM) with coefficient of organic matter digestibility of 0.503 in Expts 1 and 2, and 5.2 g N/kg DM with a digestibility range from 0.385 to 0.448 in Expt 3. The steers (15 months old) were either Brahman (B), Hereford (H) or the F-1 Brahman x Hereford (BH) cross. Steers were offered supplementary minerals with the hays in each experiment. In Expt 1 (35 days) urea was sprayed on part of the hay, allowing for daily urea intakes (g/steer) of either 0, 5, 11, 16 or 26. In Expt 2 (42 days), F-casein was offered daily (g/steer) at either 0, 75, 150, 225 or 300 and in Expt 3 (56 days) discrete offerings were made of soluble casein (225 g/day), of urea (18 g/day) + F-casein (225 g/day) or of nil. There were significant linear effects of urea intake upon hay intake and liveweight change of steers. However, B steers had smaller increases in intake and liveweight change than did H steers, and B steers did not have a linear increase in RAN concentrations with increasing urea intake as did H and SH steers. In Expt 2 there were significant linear effects of F-casein supplements on hay intake and liveweight change of steers and a significant improvement in their feed conversion ratio (i.e. DM intake:liveweight change). The B steers did not differ from H and BH steers in liveweight change but had significantly lower hay intakes and non-significantly smaller increases in RAN with increasing F-casein intake. In Expt 3, hay intake of the steers increased with soluble casein (by 16.8 %) and with urea + F-casein (24.5 %). Only steers given urea + F-casein had a high RAN concentration (94 mg/l) and a high liveweight gain. The B steers had a liveweight loss and a lower hay intake than H or BH steers in Expt 3 but a higher RAN concentration. These studies have indicated the importance of the form and quantity of additional N required by cattle of differing breed types to optimize their feed intake and liveweight gain when offered low-N, low-digestible hays.
Resumo:
H-1- and C-13-NMR spectroscopy and FT-Raman spectroscopy are used to investigate the properties of a polymer gel dosimeter post-irradiation. The polymer gel (PACT) is composed of acrylamide, N,N'-methylene-bisacrylamide, gelatin, and water. The formation of a polyacrylamide network within the gelatin matrix follows a dose dependence nonlinearly correlated to the disappearance of the double bonds from the dissolved monomers within the absorbed dose range of 0-50 Gy. The signal from the gelatin remains constant with irradiation. We show that the NMR spin-spin relaxation times (T-2) of PAGs irradiated to up to 50 Gy measured in a NMR spectrometer and a clinical magnetic resonance imaging scanner can be modeled using the spectroscopic intensity of the growing polymer network. More specifically, we show that the nonlinear T-2 dependence against dose can be understood in terms of the fraction of protons in three different proton pools. (C) 2000 John Wiley & Sons, Inc.
Resumo:
The effects of ionizing radiation in different compositions of polymer gel dosimeters are investigated using FT-Raman spectroscopy and NMR T-2 relaxation times. The dosimeters are manufactured from different concentrations of comonomers (acrylamide and N,N'-methylene-bis-acrylamide) dispersed in different concentrations of an aqueous gelatin matrix. Results are analysed using a model of fast exchange of magnetization between three proton pools. The fraction of protons in each pool is determined using the known chemical composition of the dosimeter and FT-Raman spectroscopy. Based on these results, the physical and chemical processes in interplay in the dosimeters are examined in view of their effect on the changes in T-2 The precipitation of growing macroradicals and the scavenging of free radicals by gelatin are used to explain the rate of polymerization. The model describes the changes in T-2 as a function of the absorbed dose up to 50 Gy for the different compositions. This is expected to aid the theoretical design of new, more efficient dosimeters, since it was demonstrated that the optimum dosimeter (i.e, with the lowest dose resolution) must have a range of relaxation times which match the range of T-2 values which can be determined with the lowest uncertainty using an MRI scanner.
Resumo:
We prove that for any real number p with 1 p less than or equal to n - 1, the map x/\x\ : B-n --> Sn-1 is the unique minimizer of the p-energy functional integral(Bn) \delu\(p) dx among all maps in W-1,W-p (B-n, Sn-1) with boundary value x on phiB(n).
Resumo:
Axial X-ray Computed tomography (CT) scanning provides a convenient means of recording the three-dimensional form of soil structure. The technique has been used for nearly two decades, but initial development has concentrated on qualitative description of images. More recently, increasing effort has been put into quantifying the geometry and topology of macropores likely to contribute to preferential now in soils. Here we describe a novel technique for tracing connected macropores in the CT scans. After object extraction, three-dimensional mathematical morphological filters are applied to quantify the reconstructed structure. These filters consist of sequences of so-called erosions and/or dilations of a 32-face structuring element to describe object distances and volumes of influence. The tracing and quantification methodologies were tested on a set of undisturbed soil cores collected in a Swiss pre-alpine meadow, where a new earthworm species (Aporrectodea nocturna) was accidentally introduced. Given the reduced number of samples analysed in this study, the results presented only illustrate the potential of the method to reconstruct and quantify macropores. Our results suggest that the introduction of the new species induced very limited chance to the soil structured for example, no difference in total macropore length or mean diameter was observed. However. in the zone colonised by, the new species. individual macropores tended to have a longer average length. be more vertical and be further apart at some depth. Overall, the approach proved well suited to the analysis of the three-dimensional architecture of macropores. It provides a framework for the analysis of complex structures, which are less satisfactorily observed and described using 2D imaging. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A new method for the evaluation of radiotherapy 3D polymer gel dosimeters has been developed using ultrasound to assess the significant structural changes that occur following irradiation of the dosimeters. The ultrasonic parameters of acoustic speed of propagation, attenuation and transmitted signal intensity were measured as a function of absorbed radiation dose. The dose sensitivities for each parameter were determined as 1.8 x 10(-4) s m(-1) Gy(-1), 3.9 dB m(-1) Gy(-1) and 3.2 V-1 Gy(-1) respectively. All parameters displayed a strong variation with absorbed dose that continued beyond absorbed doses of 15 Gy. The ultrasonic measurements demonstrated a significantly larger dynamic range in dose response curves than that achieved with previously published magnetic resonance imaging (MRI) dose response data. It is concluded that ultrasound shows great potential as a technique for the evaluation of polymer gel dosimeters.