972 resultados para Wheat blast
Resumo:
Near isogenic lines varying for alleles for reduced height (Rht) and photoperiod insensitivity (Ppd-D1) in cv. Mercia (2005/6 to 2010/11; rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c+Ppd-D1a, Rht-D1c, Rht12) and cvs Maris Huntsman and Maris Widgeon (2007/8 to 2010/11; rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht-B1b+Rht-D1b, Rht-D1b+Rht-B1c) were compared at one field site, but within different systems (‘organic’, O, 2005/6 to 2007/8 v ‘intensive’, I, 2005/6 to 2010/11). Further experiments at the site (2006/7 to 2008/9) compared 64 lines of a doubled haploid (DH) population [Savannah (Rht-D1b) × Renesansa (Rht-8c+Ppd-D1a)]. Gibberellin (GA) insensitive dwarfing alleles (Rht-B1b; Rht-B1c; Rht-D1b; Rht-D1c) could reduce α-amylase activity and/or increase Hagberg falling number (HFN) but effects depended greatly on system, background and season. Only Rht-B1c increased grain dormancy despite producing plants taller than Rht-D1c. The GA-sensitive Rht8c+Ppd-D1a in Mercia was associated with reduced HFN but analysis of the DH population suggested this was more closely linked with Ppd-D1a, rather than Rht8c. The severe GA-sensitive dwarfing allele Rht12 was associated with reduced HFN. Instability in HFN over season tended to increase with degree of dwarfing. There was a negative association between mean grain weight and HFN that was in addition to effects of Rht and Ppd-D1 allele.
Resumo:
Background and aim Concentrations of essential minerals in plant foods may have declined in modern high-yielding cultivars grown with large applications of nitrogen fertilizer (N). We investigated the effect of dwarfing alleles and N rate on mineral concentrations in wheat. Methods Gibberellin (GA)-insensitive reduced height (Rht) alleles were compared in near isogenic wheat lines. Two field experiments comprised factorial combinations of wheat variety backgrounds, alleles at the Rht-B1 locus (rht-B1a, Rht-B1b, Rht-B1c), and different N rates. A glasshouse experiment also included Rht-D1b and Rht-B1b+D1b in one background. Results In the field, depending on season, Rht-B1b increased crop biomass, dry matter (DM) harvest index, grain yield, and the economically-optimal N rate (Nopt). Rht-B1b did not increase uptake of Cu, Fe, Mg or Zn so these minerals were diluted in grain. Nitrogen increased DM yield and mineral uptake so grain concentrations were increased (Fe in both seasons; Cu, Mg and Zn in one season). Rht-B1b reduced mineral concentrations at Nopt in the most N responsive season. In the glasshouse experiment, grain yield was reduced, and mineral concentrations increased, with Rht allele addition. Conclusion Effects of Rht alleles on Fe, Zn, Cu and Mg concentrations in wheat grain are mostly due to their effects on DM, rather than of GA-insensitivity on Nopt or mineral uptake. Increased N requirement in semi-dwarf varieties partly offsets this dilution effect.
Resumo:
Extreme heat can accelerate wheat aging — an effect that reduces crop yields and is underestimated in most crop models. Climate warming may, therefore, present even greater challenges to wheat production than current models predict.
Resumo:
Bran is hygroscopic and competes actively for water with other key components in baked cereal products like starch and gluten. Thermogravimetric analysis (TGA) of flour–water mixtures enriched with bran at different incorporation levels was performed to characterise the release of compartmentalised water. TGA investigations showed that the presence of bran increased compartmentalised water, with the measurement of an increase of total water loss from 58.30 ± 1.93% for flour only systems to 71.80 ± 0.37% in formulations comprising 25% w/w bran. Deconvolution of TGA profiles showed an alteration of the distribution of free and bound water, and its interaction with starch and gluten, within the formulations. TGA profiles showed that water release from bran-enriched flour is a prolonged event with respect to the release from non-enriched flour, which suggests the possibility that bran may interrupt the normal characteristic processes of texture formation that occur in non-enriched products.
Resumo:
Physiological and yield traits such as stomatal conductance (mmol m-2s-1), Leaf relative water content (RWC %) and grain yield per plant were studied in a separate experiment. Results revealed that five out of sixteen cultivars viz. Anmol, Moomal, Sarsabz, Bhitai and Pavan, appeared to be relatively more drought tolerant. Based on morphophysiological results, studies were continued to look at these cultivars for drought tolerance at molecular level. Initially, four well recognized primers for dehydrin genes (DHNs) responsible for drought induction in T. durum L., T. aestivum L. and O. sativa L. were used for profiling gene sequence of sixteen wheat cultivars. The primers amplified the DHN genes variably like Primer WDHN13 (T. aestivum L.) amplified the DHN gene in only seven cultivars whereas primer TdDHN15 (T. durum L.) amplified all the sixteen cultivars with even different DNA banding patterns some showing second weaker DNA bands. Third primer TdDHN16 (T. durum L.) has shown entirely different PCR amplification prototype, specially showing two strong DNA bands while fourth primer RAB16C (O. sativa L.) failed to amplify DHN gene in any of the cultivars. Examination of DNA sequences revealed several interesting features. First, it identified the two exon/one intron structure of this gene (complete sequences were not shown), a feature not previously described in the two database cDNA sequences available from T. aestivum L. (gi|21850). Secondly, the analysis identified several single nucleotide polymorphisms (SNPs), positions in gene sequence. Although complete gene sequence was not obtained for all the cultivars, yet there were a total of 38 variable positions in exonic (coding region) sequence, from a total gene length of 453 nucleotides. Matrix of SNP shows these 37 positions with individual sequence at positions given for each of the 14 cultivars (sequence of two cultivars was not obtained) included in this analysis. It demonstrated a considerable diversity for this gene with only three cultivars i.e. TJ-83, Marvi and TD-1 being similar to the consensus sequence. All other cultivars showed a unique combination of SNPs. In order to prove a functional link between these polymorphisms and drought tolerance in wheat, it would be necessary to conduct a more detailed study involving directed mutation of this gene and DHN gene expression.
Resumo:
New crop cultivars will be required for a changing climate characterised by increased summer drought and heat stress in Europe. However, the uncertainty in climate predictions poses a challenge to crop scientists and breeders who have limited time and resources and must select the most appropriate traits for improvement. Modelling is a powerful tool to quantify future threats to crops and hence identify targets for improvement. We have used a wheat simulation model combined with local-scale climate scenarios to predict impacts of heat stress and drought on winter wheat in Europe. Despite the lower summer precipitation projected for 2050s across Europe, relative yield losses from drought is predicted to be smaller in the future, because wheat will mature earlier avoiding severe drought. By contrast, the risk of heat stress around flowering will increase, potentially resulting in substantial yield losses for heat sensitive cultivars commonly grown in northern Europe.
Resumo:
The transcriptome of the developing starchy endosperm of hexaploid wheat (Triticum aestivum) was determined using RNA-Seq isolated at five stages during grain fill. This resource represents an excellent way to identify candidate genes responsible for the starchy endosperm cell wall, which is dominated by arabinoxylan (AX), accounting for 70% of the cell wall polysaccharides, with 20% (1,3; 1,4)-beta-D-glucan, 7% glucomannan, and 4% cellulose. A complete inventory of transcripts of 124 glycosyltransferase (GT) and 72 glycosylhydrolase (GH) genes associated with cell walls is presented. The most highly expressed GT transcript (excluding those known to be involved in starch synthesis) was a GT47 family transcript similar to Arabidopsis (Arabidopsis thaliana) IRX10 involved in xylan extension, and the second most abundant was a GT61. Profiles for GT43 IRX9 and IRX14 putative orthologs were consistent with roles in AX synthesis. Low abundances were found for transcripts from genes in the acyl-coA transferase BAHD family, for which a role in AX feruloylation has been postulated. The relative expression of these was much greater in whole grain compared with starchy endosperm, correlating with the levels of bound ferulate. Transcripts associated with callose (GSL), cellulose (CESA), pectin (GAUT), and glucomannan (CSLA) synthesis were also abundant in starchy endosperm, while the corresponding cell wall polysaccharides were confirmed as low abundance (glucomannan and callose) or undetectable (pectin) in these samples. Abundant transcripts from GH families associated with the hydrolysis of these polysaccharides were also present, suggesting that they may be rapidly turned over. Abundant transcripts in the GT31 family may be responsible for the addition of Gal residues to arabinogalactan peptide.
Resumo:
A study was conducted in the Department of Plant Breeding and Genetics,Sindh Agriculture University, Tandojam, Pakistan during the year 2009. Sixteen spring wheat cultivars (Triticum aestivum L.) were screened under osmotic stress with three treatments i.e. control-no PEG (polyethylene glycol), 15 percent and 25 percent PEG-6000 solution. The analysis of variance indicated significant differences among treatments for all seedling traits except seed germination percentage. Varieties also differed significantly in germination percentage, coleoptile length, shoot root length, shoot weight, root/shoot ratio and seed vigour index. However, shoot and root weights were non-significant. Significant interactions revealed that cultivars responded variably to osmotic stress treatments; hence provided better opportunity to select drought tolerant cultivars at seedling growth stages. The relative decrease over averages due to osmotic stress was 0.8 percent in seed germination, 53 percent in coleoptile length 62.9 percent in shoot length, 74.4 percent in root length, 50.6 percent in shoot weight, 45.1 percent in root weight, 30.2 percent in root/shoot ratio and 68.5 percent in seed vigour index. However, relative decrease of individual variety for various seedling traits could be more meaningful which indicated that cultivar TD-1 showed no reduction in coleoptile length, while minimum decline was noted in Anmol. For shoot length, cultivar Sarsabz expressed minimum reduction followed by Anmol. However, cultivars Anmol, Moomal, Inqalab-91, and Pavan gave almost equally lower reductions for root length suggesting their higher stress tolerance. In other words, cultivars Anmol, Moomal, Inqalab-91, Sarsabz, TD-1, ZA-77 and Pavan had relatively longer coleoptiles, shoots and roots, and were regarded as drought tolerant. Correlation coefficients among seedlings traits were significant and positive for all traits except germination percentage which had no significant correlation with any of other trait. The results indicated that increase in one trait may cause simultaneous increase in other traits; hence selection for any of these seedling attributes will lead to develop drought tolerant wheat cultivars.
Resumo:
Near-isogenic lines (NILs) of winter wheat varying for alleles for reduced height (Rht), gibberellin (GA) response and photoperiod insensitivity (Ppd-D1a) in cv. Mercia background (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c+Ppd-D1a, Rht-D1c, Rht12) and cv. Maris Widgeon (rht (tall), Rht-D1b, Rht-B1c) backgrounds were compared to investigate main effects and interactions with tillage (plough-based, minimum-, and zero-tillage) over two years. Both minimum- and zero- tillage were associated with reduced grain yields allied to reduced harvest index, biomass accumulation, interception of photosynthetically active radiation (PAR), and plant populations. Grain yields were optimized at mature crop heights of around 740mm because this provided the best compromise between harvest index which declined with height, and above ground biomass which increased with height. Improving biomass with height was due to improvements in both PAR interception and radiation-use efficiency. Optimum height for grain yield was unaffected by tillage system or GA-sensitivity. After accounting for effects of height, GA insensitivity was associated with increased grain yields due to increased grains per spike, which was more than enough to compensate for poorer plant establishment and lower mean grain weights compared to the GA-sensitive lines. Although better establishment was possible with GA-sensitive lines, there was no evidence that this effect interacted with tillage method. We find, therefore, little evidence to question the current adoption of wheats with reduced sensitivity to GA in the UK, even as tillage intensity lessens.
Resumo:
Objective: We assessed whether a wheat bran extract containing arabino-xylan-oligosaccharide (AXOS) elicited a prebiotic effect and influenced other physiologic parameters when consumed in ready-to-eat cereal at two dose levels. Methods: This double-blind, randomized, controlled, crossover trial evaluated the effects of consuming AXOS at 0 (control), 2.2, or 4.8 g/d as part of ready-to-eat cereal for 3 wk in 55 healthy men and women. Fecal microbial levels, postprandial serum ferulic acid concentrations, and other physiologic parameters were assessed at the beginning and end of each condition. Results: The median bifidobacteria content of stool samples (log10/grams of dry weight [DW]) was found to be higher in the subjects consuming the 4.8-g/d dose (10.03) than in those consuming 2.2 g/d (9.93) and control (9.84, P < 0.001). No significant changes in the populations of other fecal microbes were observed, indicating a selective increase in fecal bifidobacteria. Postprandial ferulic acid was measured at 120 min at the start and end of each 3-wk treatment period in subjects at least 50 y old (n = 37) and increased in a dose-dependent manner (end-of-treatment values 0.007, 0.050, and 0.069 μg/mL for the control, AXOS 2.2 g/d, and AXOS 4.8 g/d conditions, respectively, P for trend < 0.001). Conclusion: These results indicate that AXOS has prebiotic properties, selectively increasing fecal bifidobacteria, and increases postprandial ferulic acid concentrations in a dose-dependent manner in healthy men and women.
Resumo:
A method is presented to calculate economic optimum fungicide doses accounting for the risk-aversion of growers responding to variability in disease severity between crops. Simple dose-response and disease-yield loss functions are used to estimate net disease-related costs (fungicide cost, plus disease-induced yield loss) as a function of dose and untreated severity. With fairly general assumptions about the shapes of the probability distribution of disease severity and the other functions involved, we show that a choice of fungicide dose which minimises net costs on average across seasons results in occasional large net costs caused by inadequate control in high disease seasons. This may be unacceptable to a grower with limited capital. A risk-averse grower can choose to reduce the size and frequency of such losses by applying a higher dose as insurance. For example, a grower may decide to accept ‘high loss’ years one year in ten or one year in twenty (i.e. specifying a proportion of years in which disease severity and net costs will be above a specified level). Our analysis shows that taking into account disease severity variation and risk-aversion will usually increase the dose applied by an economically rational grower. The analysis is illustrated with data on septoria tritici leaf blotch of wheat caused by Mycosphaerella graminicola. Observations from untreated field plots at sites across England over three years were used to estimate the probability distribution of disease severities at mid-grain filling. In the absence of a fully reliable disease forecasting scheme, reducing the frequency of ‘high loss’ years requires substantially higher doses to be applied to all crops. Disease resistant cultivars reduce both the optimal dose at all levels of risk and the disease-related costs at all doses.
Resumo:
The relative abundances of DNA of Mycosphaerella graminicola and Phaeosphaeria nodorum in archived wheat samples are closely correlated with UK anthropogenic emissions of oxidized sulphur over the last 160 years. To test whether this could be a causal relationship, possible modes of action of sulphur on the two fungi were examined. Mycelial growth of the two fungi in solutions of sulphurous acid was similar. Sulphurous acid at pH 4 reduced percentage germination of P. nodorum conidia more strongly than M. graminicola conidia. In spray inoculations of wheat cv. Squarehead’s Master, Cappelle Desprez and Riband with water or sulphurous acid (pH 4), the ratio of leaves infected by P. nodorum to leaves infected by M. graminicola was increased by factors of 2.5, 2.1 and 0.6, respectively at pH 4. The same three cultivars of wheat were grown in sand and vermiculite and fertilized with nutrient solution containing 2.5 or 0.5 mM sulphate. Both pathogens infected less frequently at 2.5 mM sulphate, by a factor of about 2. The severity of infection by M. graminicola was reduced on all three cultivars by a factor of about 4-5 at 2.5mM sulphate, but severity of P. nodorum was reduced only by a factor of about 2. Both elevated free sulphate concentrations in soil and sulphite in rainwater could therefore increase the prevalence of P. nodorum relative to M. graminicola, which is consistent with the historical changes in abundance
Resumo:
This chapter explores some of the implications of adopting a research approach that focuses on people and their livelihoods in the rice-wheat system of the Indo-Gangetic Plains. We draw on information from a study undertaken by the authors in Bangladesh and then consider the transferability of our findings to other situations. We conclude that if our research is to bridge the researcher-farmer interface, ongoing technical research must be supported by research that explores how institutional, policy, and communication strategies determine livelihood outcomes. The challenge that now faces researchers is to move beyond their involvement in participatory research to understand how to facilitate a process in which they provide information and products for others to test. Building capacity at various levels for openness in sharing information and products–seeing research as a public good for all–seems to be a prerequisite for more effective dissemination of the available information and technologies.
Resumo:
To understand whether genotypic variation in root-associated phosphatase activities in wheat impacts on its ability to acquire phosphorus (P), various phosphatase activities of roots were measured in relation to the utilization of organic P substrates in agar, and the P-nutrition of plants was investigated in a range of soils. Root-associated phosphatase activities of plants grown in hydroponics were measured against different organic P substrates. Representative genotypes were then grown in both agar culture and in soils with differing organic P contents and plant biomass and P uptake were determined. Differences in the activities of both root-associated and exuded phosphodiesterase and phosphomonoesterase were observed, and were related to the P content of plants supplied with either ribonucleic acid or glucose 6-phosphate, respectively, as the sole form of P. When the cereal lines were grown in different soils, however, there was little relationship between any root-associated phosphatase activity and plant P uptake. This indicates that despite differences in phosphatase activities of cereal roots, such variability appears to play no significant role in the P-nutrition of the plant grown in soil, and that any benefit derived from the hydrolysis of soil organic P is common to all genotypes.
Resumo:
Thermal imaging is a valuable tool for the elucidation of gas exchange dynamics between a plant and its environment. The presence of stomata in wheat glumes and awns offers an opportunity to assess photosynthetic activity of ears up to and during flowering. The knowledge of spatial and temporal thermodynamics of the wheat ear may provide insight into interactions between floret developmental stage (FDS), temperature depression (TD) and ambient environment, with potential to be used as a high-throughput screening tool for breeders. A controlled environment study was conducted using six spring wheat (Triticum aestivum L.) genotypes of the elite recombinant inbred line Seri/Babax. Average ear temperature (AET) was recorded using a hand held infrared camera and gas exchange was measured by enclosing ears in a custom built cuvette. FDS was monitored and recorded daily throughout the study. Plants were grown in pots and exposed to a combination of two temperature and two water regimes. In the examined wheat lines, TD varied from 0.1°C to 0.6°C according to the level of stress imposed. The results indicated that TD does not occur at FDS F3, the peak of active flowering, but during the preceding stages prior to pollen release and stigma maturity (F1-F2). These findings suggest that ear temperature during the early stages of anthesis, prior to pollen release and full extension of the stigma, are likely to be the most relevant for identifying heat stress tolerant genotypes.