945 resultados para West Point Region (N.Y.)--Remote-sensing maps.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Underwater georeferenced photo-transect survey was conducted on September 23 - 27, 2007 at different sections of the reef flat, reef crest and reef slope in Heron Reef. For this survey a snorkeler or diver swam over the bottom while taking photos of the benthos at a set height using a standard digital camera and towing a surface float GPS which was logging its track every five seconds. A standard digital compact camera was placed in an underwater housing and fitted with a 16 mm lens which provided a 1.0 m x 1.0 m footprint, at 0.5 m height above the benthos. Horizontal distance between photos was estimated by three fin kicks of the survey diver/snorkeler, which corresponded to a surface distance of approximately 2.0 - 4.0 m. The GPS was placed in a dry-bag and logged its position as it floated at the surface while being towed by the photographer. A total of 3,586 benthic photos were taken. A floating GPS setup connected to the swimmer/diver by a line enabled recording of coordinates of each benthic. Approximation of coordinates of each benthic photo was done based on the photo timestamp and GPS coordinate time stamp, using GPS Photo Link Software (www.geospatialexperts.com). Coordinates of each photo were interpolated by finding the gps coordinates that were logged at a set time before and after the photo was captured. Benthic or substrate cover data was derived from each photo by randomly placing 24 points over each image using the Coral Point Count excel program (Kohler and Gill, 2006). Each point was then assigned to 1 out of 80 cover types, which represented the benthic feature beneath it. Benthic cover composition summary of each photo scores was generated automatically using CPCE program. The resulting benthic cover data of each photo was linked to gps coordinates, saved as an ArcMap point shapefile, and projected to Universal Transverse Mercator WGS84 Zone 56 South.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Advanced Land Observation System (ALOS) Phased-Array Synthetic-Aperture Radar (PALSAR) is an L-band frequency (1.27 GHz) radar capable of continental-scale interferometric observations of ice sheet motion. Here, we show that PALSAR data yield excellent measurements of ice motion compared to C-band (5.6 GHz) radar data because of greater temporal coherence over snow and firn. We compare PALSAR velocities from year 2006 in Pine Island Bay, West Antarctica with those spanning years 1974 to 2007. Between 1996 and 2007, Pine Island Glacier sped up 42% and ungrounded over most of its ice plain. Smith Glacier accelerated 83% and ungrounded as well. Their largest speed up are recorded in 2007. Thwaites Glacier is not accelerating but widening with time and its eastern ice shelf doubled its speed. Total ice discharge from these glaciers increased 30% in 12 yr and the net mass loss increased 170% from 39 ± 15 Gt/yr to 105 ± 27 Gt/yr. Longer-term velocity changes suggest only a moderate loss in the 1970s. As the glaciers unground into the deeper, smoother beds inland, the mass loss from this region will grow considerably larger in years to come.