812 resultados para Wavelet neural network
Resumo:
questions of forming of learning sets for artificial neural networks in problems of lossless data compression are considered. Methods of construction and use of learning sets are studied. The way of forming of learning set during training an artificial neural network on the data stream is offered.
Resumo:
Special generalizing for the artificial neural nets: so called RFT – FN – is under discussion in the report. Such refinement touch upon the constituent elements for the conception of artificial neural network, namely, the choice of main primary functional elements in the net, the way to connect them(topology) and the structure of the net as a whole. As to the last, the structure of the functional net proposed is determined dynamically just in the constructing the net by itself by the special recurrent procedure. The number of newly joining primary functional elements, the topology of its connecting and tuning of the primary elements is the content of the each recurrent step. The procedure is terminated under fulfilling “natural” criteria relating residuals for example. The functional proposed can be used in solving the approximation problem for the functions, represented by its observations, for classifying and clustering, pattern recognition, etc. Recurrent procedure provide for the versatile optimizing possibilities: as on the each step of the procedure and wholly: by the choice of the newly joining elements, topology, by the affine transformations if input and intermediate coordinate as well as by its nonlinear coordinate wise transformations. All considerations are essentially based, constructively and evidently represented by the means of the Generalized Inverse.
Resumo:
In the paper, an ontogenic artificial neural network (ANNs) is proposed. The network uses orthogonal activation functions that allow significant reducing of computational complexity. Another advantage is numerical stability, because the system of activation functions is linearly independent by definition. A learning procedure for proposed ANN with guaranteed convergence to the global minimum of error function in the parameter space is developed. An algorithm for structure network structure adaptation is proposed. The algorithm allows adding or deleting a node in real-time without retraining of the network. Simulation results confirm the efficiency of the proposed approach.
Resumo:
This paper presents an analysis of different techniques that is designed to aid a researcher in determining which of the classification techniques would be most appropriate to choose the ridge, robust and linear regression methods for predicting outcomes for specific quasi-stationary process.
Resumo:
Signal processing is an important topic in technological research today. In the areas of nonlinear dynamics search, the endeavor to control or order chaos is an issue that has received increasing attention over the last few years. Increasing interest in neural networks composed of simple processing elements (neurons) has led to widespread use of such networks to control dynamic systems learning. This paper presents backpropagation-based neural network architecture that can be used as a controller to stabilize unsteady periodic orbits. It also presents a neural network-based method for transferring the dynamics among attractors, leading to more efficient system control. The procedure can be applied to every point of the basin, no matter how far away from the attractor they are. Finally, this paper shows how two mixed chaotic signals can be controlled using a backpropagation neural network as a filter to separate and control both signals at the same time. The neural network provides more effective control, overcoming the problems that arise with control feedback methods. Control is more effective because it can be applied to the system at any point, even if it is moving away from the target state, which prevents waiting times. Also control can be applied even if there is little information about the system and remains stable longer even in the presence of random dynamic noise.
Resumo:
Neural Networks have been successfully employed in different biomedical settings. They have been useful for feature extractions from images and biomedical data in a variety of diagnostic applications. In this paper, they are applied as a diagnostic tool for classifying different levels of gastric electrical uncoupling in controlled acute experiments on dogs. Data was collected from 16 dogs using six bipolar electrodes inserted into the serosa of the antral wall. Each dog underwent three recordings under different conditions: (1) basal state, (2) mild surgically-induced uncoupling, and (3) severe surgically-induced uncoupling. For each condition half-hour recordings were made. The neural network was implemented according to the Learning Vector Quantization model. This is a supervised learning model of the Kohonen Self-Organizing Maps. Majority of the recordings collected from the dogs were used for network training. Remaining recordings served as a testing tool to examine the validity of the training procedure. Approximately 90% of the dogs from the neural network training set were classified properly. However, only 31% of the dogs not included in the training process were accurately diagnosed. The poor neural-network based diagnosis of recordings that did not participate in the training process might have been caused by inappropriate representation of input data. Previous research has suggested characterizing signals according to certain features of the recorded data. This method, if employed, would reduce the noise and possibly improve the diagnostic abilities of the neural network.
Resumo:
* Supported by INTAS 2000-626, INTAS YSF 03-55-1969, INTAS INNO 182, and TIC 2003-09319-c03-03.
Resumo:
The problem of multi-agent routing in static telecommunication networks with fixed configuration is considered. The problem is formulated in two ways: for centralized routing schema with the coordinator-agent (global routing) and for distributed routing schema with independent agents (local routing). For both schemas appropriate Hopfield neural networks (HNN) are constructed.
Resumo:
The neural-like growing networks used in the intelligent system of recognition of images are under consideration in this paper. All operations made over the image on a pre-design stage and also classification and storage of the information about the images and their further identification are made extremely by mechanisms of neural-like networks without usage of complex algorithms requiring considerable volumes of calculus. At the conforming hardware support the neural network methods allow considerably to increase the effectiveness of the solution of the given class of problems, saving a high accuracy of result and high level of response, both in a mode of training, and in a mode of identification.
Resumo:
Categorising visitors based on their interaction with a website is a key problem in Web content usage. The clickstreams generated by various users often follow distinct patterns, the knowledge of which may help in providing customised content. This paper proposes an approach to clustering weblog data, based on ART2 neural networks. Due to the characteristics of the ART2 neural network model, the proposed approach can be used for unsupervised and self-learning data mining, which makes it adaptable to dynamically changing websites.
Resumo:
A major drawback of artificial neural networks is their black-box character. Therefore, the rule extraction algorithm is becoming more and more important in explaining the extracted rules from the neural networks. In this paper, we use a method that can be used for symbolic knowledge extraction from neural networks, once they have been trained with desired function. The basis of this method is the weights of the neural network trained. This method allows knowledge extraction from neural networks with continuous inputs and output as well as rule extraction. An example of the application is showed. This example is based on the extraction of average load demand of a power plant.
Resumo:
In nonlinear and stochastic control problems, learning an efficient feed-forward controller is not amenable to conventional neurocontrol methods. For these approaches, estimating and then incorporating uncertainty in the controller and feed-forward models can produce more robust control results. Here, we introduce a novel inversion-based neurocontroller for solving control problems involving uncertain nonlinear systems which could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. Based on importance sampling from these distributions a novel robust inverse control approach is obtained. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider. A nonlinear multi-variable system with different delays between the input-output pairs is used to demonstrate the successful application of the developed control algorithm. The proposed method is suitable for redundant control systems and allows us to model strongly non-Gaussian distributions of control signal as well as processes with hysteresis. © 2004 Elsevier Ltd. All rights reserved.
Resumo:
As traffic congestion exuberates and new roadway construction is severely constrained because of limited availability of land, high cost of land acquisition, and communities' opposition to the building of major roads, new solutions have to be sought to either make roadway use more efficient or reduce travel demand. There is a general agreement that travel demand is affected by land use patterns. However, traditional aggregate four-step models, which are the prevailing modeling approach presently, assume that traffic condition will not affect people's decision on whether to make a trip or not when trip generation is estimated. Existing survey data indicate, however, that differences exist in trip rates for different geographic areas. The reasons for such differences have not been carefully studied, and the success of quantifying the influence of land use on travel demand beyond employment, households, and their characteristics has been limited to be useful to the traditional four-step models. There may be a number of reasons, such as that the representation of influence of land use on travel demand is aggregated and is not explicit and that land use variables such as density and mix and accessibility as measured by travel time and congestion have not been adequately considered. This research employs the artificial neural network technique to investigate the potential effects of land use and accessibility on trip productions. Sixty two variables that may potentially influence trip production are studied. These variables include demographic, socioeconomic, land use and accessibility variables. Different architectures of ANN models are tested. Sensitivity analysis of the models shows that land use does have an effect on trip production, so does traffic condition. The ANN models are compared with linear regression models and cross-classification models using the same data. The results show that ANN models are better than the linear regression models and cross-classification models in terms of RMSE. Future work may focus on finding a representation of traffic condition with existing network data and population data which might be available when the variables are needed to in prediction.
Resumo:
The microarray technology provides a high-throughput technique to study gene expression. Microarrays can help us diagnose different types of cancers, understand biological processes, assess host responses to drugs and pathogens, find markers for specific diseases, and much more. Microarray experiments generate large amounts of data. Thus, effective data processing and analysis are critical for making reliable inferences from the data. ^ The first part of dissertation addresses the problem of finding an optimal set of genes (biomarkers) to classify a set of samples as diseased or normal. Three statistical gene selection methods (GS, GS-NR, and GS-PCA) were developed to identify a set of genes that best differentiate between samples. A comparative study on different classification tools was performed and the best combinations of gene selection and classifiers for multi-class cancer classification were identified. For most of the benchmarking cancer data sets, the gene selection method proposed in this dissertation, GS, outperformed other gene selection methods. The classifiers based on Random Forests, neural network ensembles, and K-nearest neighbor (KNN) showed consistently god performance. A striking commonality among these classifiers is that they all use a committee-based approach, suggesting that ensemble classification methods are superior. ^ The same biological problem may be studied at different research labs and/or performed using different lab protocols or samples. In such situations, it is important to combine results from these efforts. The second part of the dissertation addresses the problem of pooling the results from different independent experiments to obtain improved results. Four statistical pooling techniques (Fisher inverse chi-square method, Logit method. Stouffer's Z transform method, and Liptak-Stouffer weighted Z-method) were investigated in this dissertation. These pooling techniques were applied to the problem of identifying cell cycle-regulated genes in two different yeast species. As a result, improved sets of cell cycle-regulated genes were identified. The last part of dissertation explores the effectiveness of wavelet data transforms for the task of clustering. Discrete wavelet transforms, with an appropriate choice of wavelet bases, were shown to be effective in producing clusters that were biologically more meaningful. ^
Resumo:
Providing transportation system operators and travelers with accurate travel time information allows them to make more informed decisions, yielding benefits for individual travelers and for the entire transportation system. Most existing advanced traveler information systems (ATIS) and advanced traffic management systems (ATMS) use instantaneous travel time values estimated based on the current measurements, assuming that traffic conditions remain constant in the near future. For more effective applications, it has been proposed that ATIS and ATMS should use travel times predicted for short-term future conditions rather than instantaneous travel times measured or estimated for current conditions. ^ This dissertation research investigates short-term freeway travel time prediction using Dynamic Neural Networks (DNN) based on traffic detector data collected by radar traffic detectors installed along a freeway corridor. DNN comprises a class of neural networks that are particularly suitable for predicting variables like travel time, but has not been adequately investigated for this purpose. Before this investigation, it was necessary to identifying methods for data imputation to account for missing data usually encountered when collecting data using traffic detectors. It was also necessary to identify a method to estimate the travel time on the freeway corridor based on data collected using point traffic detectors. A new travel time estimation method referred to as the Piecewise Constant Acceleration Based (PCAB) method was developed and compared with other methods reported in the literatures. The results show that one of the simple travel time estimation methods (the average speed method) can work as well as the PCAB method, and both of them out-perform other methods. This study also compared the travel time prediction performance of three different DNN topologies with different memory setups. The results show that one DNN topology (the time-delay neural networks) out-performs the other two DNN topologies for the investigated prediction problem. This topology also performs slightly better than the simple multilayer perceptron (MLP) neural network topology that has been used in a number of previous studies for travel time prediction.^