895 resultados para Virtual Computer World
Resumo:
The SimProgramming teaching approach has the goal to help students overcome their learning difficulties in the transition from entry-level to advanced computer programming and prepare them for real-world labour environments, adopting learning strategies. It immerses learners in a businesslike learning environment, where students develop a problem-based learning activity with a specific set of tasks, one of which is filling weekly individual forms. We conducted thematic analysis of 401 weekly forms, to identify the students’ strategies for self-regulation of learning during assignment. The students are adopting different strategies in each phase of the approach. The early phases are devoted to organization and planning, later phases focus on applying theoretical knowledge and hands-on programming. Based on the results, we recommend the development of educational practices to help students conduct self-reflection of their performance during tasks.
Resumo:
The primary goals of this study are to: embed sustainable concepts of energy consumption into certain part of existing Computer Science curriculum for English schools; investigate how to motivate 7-to-11 years old kids to learn these concepts; promote responsive ICT (Information and Communications Technology) use by these kids in their daily life; raise their awareness of today’s ecological challenges. Sustainability-related ICT lessons developed aim to provoke computational thinking and creativity to foster understanding of environmental impact of ICT and positive environmental impact of small changes in user energy consumption behaviour. The importance of including sustainability into the Computer Science curriculum is due to the fact that ICT is both a solution and one of the causes of current world ecological problems. This research follows Agile software development methodology. In order to achieve the aforementioned goals, sustainability requirements, curriculum requirements and technical requirements are firstly analysed. Secondly, the web-based user interface is designed. In parallel, a set of three online lessons (video, slideshow and game) is created for the website GreenICTKids.com taking into account several green design patterns. Finally, the evaluation phase involves the collection of adults’ and kids’ feedback on the following: user interface; contents; user interaction; impacts on the kids’ sustainability awareness and on the kids’ behaviour with technologies. In conclusion, a list of research outcomes is as follows: 92% of the adults learnt more about energy consumption; 80% of the kids are motivated to learn about energy consumption and found the website easy to use; 100% of the kids understood the contents and liked website’s visual aspect; 100% of the kids will try to apply in their daily life what they learnt through the online lessons.
Resumo:
Between 2009 and 2011, a joint academia-industry effort took place to integrate Second Life and OpenSimulator platforms into a corporate elearning provider’s learning management platform. The process involved managers and lead developers at the provider and an academic engineering research team. We performed content analysis on the documents produced in this process, seeking data on the corporate perspective of requirements for virtual world platforms to be usable in everyday practice. In this paper, we present the requirements found in the documents, and detail how they emerged and evolved throughout the process.
Resumo:
Secure computation involves multiple parties computing a common function while keeping their inputs private, and is a growing field of cryptography due to its potential for maintaining privacy guarantees in real-world applications. However, current secure computation protocols are not yet efficient enough to be used in practice. We argue that this is due to much of the research effort being focused on generality rather than specificity. Namely, current research tends to focus on constructing and improving protocols for the strongest notions of security or for an arbitrary number of parties. However, in real-world deployments, these security notions are often too strong, or the number of parties running a protocol would be smaller. In this thesis we make several steps towards bridging the efficiency gap of secure computation by focusing on constructing efficient protocols for specific real-world settings and security models. In particular, we make the following four contributions: - We show an efficient (when amortized over multiple runs) maliciously secure two-party secure computation (2PC) protocol in the multiple-execution setting, where the same function is computed multiple times by the same pair of parties. - We improve the efficiency of 2PC protocols in the publicly verifiable covert security model, where a party can cheat with some probability but if it gets caught then the honest party obtains a certificate proving that the given party cheated. - We show how to optimize existing 2PC protocols when the function to be computed includes predicate checks on its inputs. - We demonstrate an efficient maliciously secure protocol in the three-party setting.
Resumo:
Part 21: Mobility and Logistics
Resumo:
Part 21: Mobility and Logistics
Resumo:
Part 18: Optimization in Collaborative Networks
Resumo:
Part 17: Risk Analysis
Resumo:
Part 16: Performance Measurement Systems
Resumo:
Part 14: Interoperability and Integration
Resumo:
Hoje em dia o ensino e aprendizagem a distância online de nível universitário é, em grande medida, baseado em estratégias de aprendizagem colaborativa, onde, além de aprender sozinho, os estudantes também participam de ações colaborativas dentro de uma classe virtual. O nível de interação do estudante online representa um fator fundamental para o sucesso do processo de ensino-aprendizagem pois é a base da partilha de informação e construção do conhecimento entre estudantes e professores, enquanto todas as ações e atividades integram um modelo pedagógico comum. Existem muitas diferenças e desafios nas áreas de ensino em termos de instanciação do modelo pedagógico e adoção das estratégias de ensino-aprendizagem, como por exemplo, entre as áreas das ciências sociais e das engenharias. Uma área que atrai especial atenção como um todo é a das ciências da computação (CS), e de forma específica, a da programação de computadores. A programação de computadores exige, em primeiro lugar, o desenvolvimento de um bom raciocínio lógico e uma estratégia de resolução segundo uma abordagem “dividir para conquistar”, onde os principais problemas são divididos em problemas menores que são resolvidos individualmente. A programação exige também uma combinação entre o trabalho individual e em grupo, com elevados níveis de revisão e depuração do código fonte em desenvolvimento. O ensino online de programação de computadores é constituído por estes aspectos, exigindo um elevado grau de interação entre estudantes e entre estudantes e professor. Neste capítulo, vamos discutir e apresentar a nossa experiência no ensino online da programação de computadores com base no modelo pedagógico virtual da Universidade Aberta, e propor a sua instanciação e extensão específica para incluir novas estratégias de aprendizagem colaborativa e uma abordagem construtivista para o processo global de aprendizagem.
Resumo:
Part 13: Virtual Reality and Simulation
Resumo:
Part 12: Collaboration Platforms
Resumo:
Part 12: Collaboration Platforms
Resumo:
Part 12: Collaboration Platforms