925 resultados para Vibration based damage detection
Resumo:
Acoustic Emission (AE) monitoring can be used to detect the presence of damage as well as determine its location in Structural Health Monitoring (SHM) applications. Information on the time difference of the signal generated by the damage event arriving at different sensors is essential in performing localization. This makes the time of arrival (ToA) an important piece of information to retrieve from the AE signal. Generally, this is determined using statistical methods such as the Akaike Information Criterion (AIC) which is particularly prone to errors in the presence of noise. And given that the structures of interest are surrounded with harsh environments, a way to accurately estimate the arrival time in such noisy scenarios is of particular interest. In this work, two new methods are presented to estimate the arrival times of AE signals which are based on Machine Learning. Inspired by great results in the field, two models are presented which are Deep Learning models - a subset of machine learning. They are based on Convolutional Neural Network (CNN) and Capsule Neural Network (CapsNet). The primary advantage of such models is that they do not require the user to pre-define selected features but only require raw data to be given and the models establish non-linear relationships between the inputs and outputs. The performance of the models is evaluated using AE signals generated by a custom ray-tracing algorithm by propagating them on an aluminium plate and compared to AIC. It was found that the relative error in estimation on the test set was < 5% for the models compared to around 45% of AIC. The testing process was further continued by preparing an experimental setup and acquiring real AE signals to test on. Similar performances were observed where the two models not only outperform AIC by more than a magnitude in their average errors but also they were shown to be a lot more robust as compared to AIC which fails in the presence of noise.
Resumo:
The work described in this Master’s Degree thesis was born after the collaboration with the company Maserati S.p.a, an Italian luxury car maker with its headquarters located in Modena, in the heart of the Italian Motor Valley, where I worked as a stagiaire in the Virtual Engineering team between September 2021 and February 2022. This work proposes the validation using real-world ECUs of a Driver Drowsiness Detection (DDD) system prototype based on different detection methods with the goal to overcome input signal losses and system failures. Detection methods of different categories have been chosen from literature and merged with the goal of utilizing the benefits of each of them, overcoming their limitations and limiting as much as possible their degree of intrusiveness to prevent any kind of driving distraction: an image processing-based technique for human physical signals detection as well as methods based on driver-vehicle interaction are used. A Driver-In-the-Loop simulator is used to gather real data on which a Machine Learning-based algorithm will be trained and validated. These data come from the tests that the company conducts in its daily activities so confidential information about the simulator and the drivers will be omitted. Although the impact of the proposed system is not remarkable and there is still work to do in all its elements, the results indicate the main advantages of the system in terms of robustness against subsystem failures and signal losses.
Resumo:
The Structural Health Monitoring (SHM) research area is increasingly investigated due to its high potential in reducing the maintenance costs and in ensuring the systems safety in several industrial application fields. A growing demand of new SHM systems, permanently embedded into the structures, for savings in weight and cabling, comes from the aeronautical and aerospace application fields. As consequence, the embedded electronic devices are to be wirelessly connected and battery powered. As result, a low power consumption is requested. At the same time, high performance in defects or impacts detection and localization are to be ensured to assess the structural integrity. To achieve these goals, the design paradigms can be changed together with the associate signal processing. The present thesis proposes design strategies and unconventional solutions, suitable both for real-time monitoring and periodic inspections, relying on piezo-transducers and Ultrasonic Guided Waves. In the first context, arrays of closely located sensors were designed, according to appropriate optimality criteria, by exploiting sensors re-shaping and optimal positioning, to achieve improved damages/impacts localisation performance in noisy environments. An additional sensor re-shaping procedure was developed to tackle another well-known issue which arises in realistic scenario, namely the reverberation. A novel sensor, able to filter undesired mechanical boundaries reflections, was validated via simulations based on the Green's functions formalism and FEM. In the active SHM context, a novel design methodology was used to develop a single transducer, called Spectrum-Scanning Acoustic Transducer, to actively inspect a structure. It can estimate the number of defects and their distances with an accuracy of 2[cm]. It can also estimate the damage angular coordinate with an equivalent mainlobe aperture of 8[deg], when a 24[cm] radial gap between two defects is ensured. A suitable signal processing was developed in order to limit the computational cost, allowing its use with embedded electronic devices.
Resumo:
Monte Carlo track structures (MCTS) simulations have been recognized as useful tools for radiobiological modeling. However, the authors noticed several issues regarding the consistency of reported data. Therefore, in this work, they analyze the impact of various user defined parameters on simulated direct DNA damage yields. In addition, they draw attention to discrepancies in published literature in DNA strand break (SB) yields and selected methodologies. The MCTS code Geant4-DNA was used to compare radial dose profiles in a nanometer-scale region of interest (ROI) for photon sources of varying sizes and energies. Then, electron tracks of 0.28 keV-220 keV were superimposed on a geometric DNA model composed of 2.7 × 10(6) nucleosomes, and SBs were simulated according to four definitions based on energy deposits or energy transfers in DNA strand targets compared to a threshold energy ETH. The SB frequencies and complexities in nucleosomes as a function of incident electron energies were obtained. SBs were classified into higher order clusters such as single and double strand breaks (SSBs and DSBs) based on inter-SB distances and on the number of affected strands. Comparisons of different nonuniform dose distributions lacking charged particle equilibrium may lead to erroneous conclusions regarding the effect of energy on relative biological effectiveness. The energy transfer-based SB definitions give similar SB yields as the one based on energy deposit when ETH ≈ 10.79 eV, but deviate significantly for higher ETH values. Between 30 and 40 nucleosomes/Gy show at least one SB in the ROI. The number of nucleosomes that present a complex damage pattern of more than 2 SBs and the degree of complexity of the damage in these nucleosomes diminish as the incident electron energy increases. DNA damage classification into SSB and DSB is highly dependent on the definitions of these higher order structures and their implementations. The authors' show that, for the four studied models, different yields are expected by up to 54% for SSBs and by up to 32% for DSBs, as a function of the incident electrons energy and of the models being compared. MCTS simulations allow to compare direct DNA damage types and complexities induced by ionizing radiation. However, simulation results depend to a large degree on user-defined parameters, definitions, and algorithms such as: DNA model, dose distribution, SB definition, and the DNA damage clustering algorithm. These interdependencies should be well controlled during the simulations and explicitly reported when comparing results to experiments or calculations.
Resumo:
Paper has become increasingly recognized as a very interesting substrate for the construction of microfluidic devices, with potential application in a variety of areas, including health diagnosis, environmental monitoring, immunoassays and food safety. The aim of this review is to present a short history of analytical systems constructed from paper, summarize the main advantages and disadvantages of fabrication techniques, exploit alternative methods of detection such as colorimetric, electrochemical, photoelectrochemical, chemiluminescence and electrochemiluminescence, as well as to take a closer look at the novel achievements in the field of bioanalysis published during the last 2 years. Finally, the future trends for production of such devices are discussed.
Resumo:
Mutations in the SPG4 gene (SPG4-HSP) are the most frequent cause of hereditary spastic paraplegia, but the extent of the neurodegeneration related to the disease is not yet known. Therefore, our objective is to identify regions of the central nervous system damaged in patients with SPG4-HSP using a multi-modal neuroimaging approach. In addition, we aimed to identify possible clinical correlates of such damage. Eleven patients (mean age 46.0 ± 15.0 years, 8 men) with molecular confirmation of hereditary spastic paraplegia, and 23 matched healthy controls (mean age 51.4 ± 14.1years, 17 men) underwent MRI scans in a 3T scanner. We used 3D T1 images to perform volumetric measurements of the brain and spinal cord. We then performed tract-based spatial statistics and tractography analyses of diffusion tensor images to assess microstructural integrity of white matter tracts. Disease severity was quantified with the Spastic Paraplegia Rating Scale. Correlations were then carried out between MRI metrics and clinical data. Volumetric analyses did not identify macroscopic abnormalities in the brain of hereditary spastic paraplegia patients. In contrast, we found extensive fractional anisotropy reduction in the corticospinal tracts, cingulate gyri and splenium of the corpus callosum. Spinal cord morphometry identified atrophy without flattening in the group of patients with hereditary spastic paraplegia. Fractional anisotropy of the corpus callosum and pyramidal tracts did correlate with disease severity. Hereditary spastic paraplegia is characterized by relative sparing of the cortical mantle and remarkable damage to the distal portions of the corticospinal tracts, extending into the spinal cord.
Resumo:
Oxidative stress and inflammatory processes strongly contribute to pathogenesis in Duchenne muscular dystrophy (DMD). Based on evidence that excess iron may increase oxidative stress and contribute to the inflammatory response, we investigated whether deferoxamine (DFX), a potent iron chelating agent, reduces oxidative stress and inflammation in the diaphragm (DIA) muscle of mdx mice (an experimental model of DMD). Fourteen-day-old mdx mice received daily intraperitoneal injections of DFX at a dose of 150 mg/kg body weight, diluted in saline, for 14 days. C57BL/10 and control mdx mice received daily intraperitoneal injections of saline only, for 14 days. Grip strength was evaluated as a functional measure, and blood samples were collected for biochemical assessment of muscle fiber degeneration. In addition, the DIA muscle was removed and processed for histopathology and Western blotting analysis. In mdx mice, DFX reduced muscle damage and loss of muscle strength. DFX treatment also resulted in a significant reduction of dystrophic inflammatory processes, as indicated by decreases in the inflammatory area and in NF-κB levels. DFX significantly decreased oxidative damage, as shown by lower levels of 4-hydroxynonenal and a reduction in dihydroethidium staining in the DIA muscle of mdx mice. The results of the present study suggest that DFX may be useful in therapeutic strategies to ameliorate dystrophic muscle pathology, possibly via mechanisms involving oxidative and inflammatory pathways.
Resumo:
Machado-Joseph disease (SCA3) is the most frequent spinocerebellar ataxia worldwide and characterized by remarkable phenotypic heterogeneity. MRI-based studies in SCA3 focused in the cerebellum and connections, but little is known about cord damage in the disease and its clinical relevance. To evaluate the spinal cord damage in SCA3 through quantitative analysis of MRI scans. A group of 48 patients with SCA3 and 48 age and gender-matched healthy controls underwent MRI on a 3T scanner. We used T1-weighted 3D images to estimate the cervical spinal cord area (CA) and eccentricity (CE) at three C2/C3 levels based on a semi-automatic image segmentation protocol. The scale for assessment and rating of ataxia (SARA) was employed to quantify disease severity. The two groups-SCA3 and controls-were significantly different regarding CA (49.5 ± 7.3 vs 67.2 ± 6.3 mm(2), p < 0.001) and CE values (0.79 ± 0.06 vs 0.75 ± 0.05, p = 0.005). In addition, CA presented a significant correlation with SARA scores in the patient group (p = 0.010). CE was not associated with SARA scores (p = 0.857). In the multiple variable regression, we found that disease duration was the only variable associated with CA (coefficient = -0.629, p = 0.025). SCA3 is characterized by cervical cord atrophy and antero-posterior flattening. In addition, the spinal cord areas did correlate with disease severity. This suggests that quantitative analyses of the spinal cord MRI might be a useful biomarker in SCA3.
Resumo:
A rapid and low cost method to determine Cr(VI) in soils based upon alkaline metal extraction at room temperature is proposed as a semi-quantitative procedure to be performed in the field. A color comparison with standards with contents of Cr(VI) in the range of 10 to 150 mg kg-1 was used throughout. For the different types of soils studied, more than 75% of the fortified soluble Cr(VI) were recovered for all levels of spike tested for both the proposed and standard methods. Recoveries of 83 and 99% were obtained for the proposed and the standard methods, respectively, taking into account the analysis of a heavily contaminated soil sample.
Resumo:
Losses of horticulture product in Brazil are significant and among the main causes are the use of inappropriate boxes and the absence of a cold chain. A project for boxes is proposed, based on computer simulations, optimization and experimental validation, trying to minimize the amount of wood associated with structural and ergonomic aspects and the effective area of the openings. Three box prototypes were designed and built using straight laths with different configurations and areas of openings (54% and 36%). The cooling efficiency of Tommy Atkins mango (Mangifera Indica L.) was evaluated by determining the cooling time for fruit packed in the wood models and packed in the commercially used cardboard boxes, submitted to cooling in a forced-air system, at a temperature of 6ºC and average relative humidity of 85.4±2.1%. The Finite Element Method was applied, for the dimensioning and structural optimization of the model with the best behavior in relation to cooling. All wooden boxes with fruit underwent vibration testing for two hours (20 Hz). There was no significant difference in average cooling time in the wooden boxes (36.08±1.44 min); however, the difference was significant in comparison to the cardboard boxes (82.63±29.64 min). In the model chosen for structural optimization (36% effective area of openings and two side laths), the reduction in total volume of material was 60% and 83% in the cross section of the columns. There was no indication of mechanical damage in the fruit after undergoing the vibration test. Computer simulations and structural study may be used as a support tool for developing projects for boxes, with geometric, ergonomic and thermal criteria.
Resumo:
The objective of the present study was to improve the detection of B. abortus by PCR in organs of aborted fetuses from infected cows, an important mechanism to find infected herds on the eradication phase of the program. So, different DNA extraction protocols were compared, focusing the PCR detection of B. abortus in clinical samples collected from aborted fetuses or calves born from cows challenged with the 2308 B. abortus strain. Therefore, two gold standard groups were built based on classical bacteriology, formed from: 32 lungs (17 positives), 26 spleens (11 positives), 23 livers (8 positives) and 22 bronchial lymph nodes (7 positives). All samples were submitted to three DNA extraction protocols, followed by the same amplification process with the primers B4 and B5. From the accumulated results for organ, the proportion of positives for the lungs was higher than the livers (p=0.04) or bronchial lymph nodes (p=0.004) and equal to the spleens (p=0.18). From the accumulated results for DNA extraction protocol, the proportion of positives for the Boom protocol was bigger than the PK (p<0.0001) and GT (p=0.0004). There was no difference between the PK and GT protocols (p=0.5). Some positive samples from the classical bacteriology were negative to the PCR and viceversa. Therefore, the best strategy for B. abortus detection in the organs of aborted fetuses or calves born from infected cows is the use, in parallel, of isolation by classical bacteriology and the PCR, with the DNA extraction performed by the Boom protocol.
Resumo:
Due to the imprecise nature of biological experiments, biological data is often characterized by the presence of redundant and noisy data. This may be due to errors that occurred during data collection, such as contaminations in laboratorial samples. It is the case of gene expression data, where the equipments and tools currently used frequently produce noisy biological data. Machine Learning algorithms have been successfully used in gene expression data analysis. Although many Machine Learning algorithms can deal with noise, detecting and removing noisy instances from the training data set can help the induction of the target hypothesis. This paper evaluates the use of distance-based pre-processing techniques for noise detection in gene expression data classification problems. This evaluation analyzes the effectiveness of the techniques investigated in removing noisy data, measured by the accuracy obtained by different Machine Learning classifiers over the pre-processed data.
Resumo:
An amperometric lactate biosensor with lactate oxidase immobilized into a Prussian Blue (PB) modified electrode was fabricated. The advantage of using cetyltrimethylammonium bromide (CTAB) in the electrodeposition step of PB films onto glassy carbon surfaces was confirmed taking into account both the stability and sensitivity of the measurements. The biosensor was used in the development of a FIA amperometric method for the determination of lactate. Under optimal operating conditions (pH = 6.9, E = -0.1 V), the linear response of the method was extended up to 0.28 µmol L-1 lactate with a limit of detection of 0.84 mmol L-1. The repeatability of the method for injections of a 0.28 mmol L-1 lactate solution was 2.2 % (n = 18). The usefulness of the method was demonstrated by determining lactate in beer samples and the results were in good agreement with those obtained by using a reference spectrophotometric enzyme method.