953 resultados para Velvet bean
Resumo:
The diffuse and regular reflectances of five optically absorbing coatings frequently used in optical systems, were measured over the 0.32-14.3 mu m wavelength range, before and after exposure to heat and intense optical radiation. The measured coatings included Nextel Velvet Black, an anodised coating and NPL Super Black. The anodised coating exhibited substantial variations in its diffuse and regular reflectance values after thermal and simulated solar ageing. Solar and thermal ageing of the Nextel Velvet Black resulted in increases of its reflectance. However, thermal ageing tended to decrease the reflectance of the other paint samples examined. Thermal and solar ageing of the NPL Super Black resulted in only minor changes in its reflectance characteristics. All measurements are traceable to the UK National Standards.
Resumo:
Increasing levels of CO2 and H+ proton in the rhizosphere from some legumes may play an important role in calcite dissolution of calcareous salt affected soils. Soils planted with white and brown varieties of cowpea (Vigna unguiculata L.) and hyacinth bean (Dolichos lablab L.) relying on either fertilizer N (KNO3) or N-fixation were compared against soils to which gypsum was applied and a control without plants and gypsum application to study the possibility of Ca2+ release from calcite and Na+ leaching. As compared to plants relying on inorganic N, leachates from all pore volumes (0·5, 1·0, 1·5, 2·0 pore volume) in lysimeters planted with N-fixing hyacinth bean contained significantly higher concentrations of HCO with lower concentrations from lysimeters planted with white cowpea relying on N-fixation. However, the lowest concentrations of HCO were recorded in the gypsum and control treatments. In initial leaching, lysimeters planted with N-fixing plants maintained similar leachate Ca2+ and Na+ concentrations compared to gypsum amended soils. However, gypsum amended soils were found to have a prolonged positive effect on Na+ removal. It might be concluded that some legumes that are known to fix N in calcareous salt affected soils may be an alternative ameliorant to the extremely expensive gypsum through calcite solubilization and a consequent release of Ca2+.
Resumo:
The effects of maize and soya bean residues on the pH and charge of a loamy sand (Kawalazi) and a sandy clay loam (Naming'omba) from Malawi were measured to determine both the indirect effect of the residues on soil charge through the changes in pH, and the direct contribution of charge carried on the residue surfaces. The soils had pH values (10 mM CaCl2) of 4.3 and 5.0 and organic matter contents were 1.4% and 2.7%, respectively. The clay fractions were dominated by kaolinite and goethite, and mica was present in both samples. The soils were incubated for 28 days with maize (Zea mays) and soya bean (Glycine max) residues. The maximum addition of residue (12.0%) in the Kawalazi and Naming'omba soils increased the pH from 4.3 and 5.0 to 4.8 and 5.3 (maize) and to 9.0 and 8.8 (soya bean), respectively. Negative charge increased from 2.1 and 4.7 cmol(c) kg(-1) to 3.8 and 7.5 (maize) and to 5.3 and 9.3 cmol(c) kg(-1) (soya bean). Positive charge increased from 0.72 and 0.62 to 0.87 and 0.85 cmol(c) kg(-1) (maize) and to 0.75 and 0.68 (soya bean). The charge contribution by the residues was calculated by difference between the charge on a sample incubated with residue and the charge on a soil without residue limed to the same pH value. Up to 100 cmolc negative charge and 10 cmol(c) of positive charge per kg of residue were directly contributed to the soil-residue mixture, the amounts depending on the type of residue, the extent to which the residue was decomposed in the soil and the pH of the mixture. The Anderson and Sposito method [Soil Sci. Soc. Am. J. 55 (1991) 1569] was used to partition the permanent negative charge (holding Cs+) from variable negative charge (holding Li+). In the pH range 3.7-6.5 the maize residue contributed between 3 and 26 cmol(c) of variable charge per kg of residue in the Kawalazi soil and between 6 and 25 cmol(c) per kg of residue in the Naming'omba soil. For soya bean the values were between I and 28 and between 4 and 68 cmolc per kg of residue, respectively. At a given pH value, the charge tended to increase with time of incubation and for a given addition of residue, pH decreased during incubation. Addition of residues contributed no permanent negative charge and the charge on the soil measured by Cs adsorption was independent of pH change caused by the residue showing that the method is valid for soil-residue mixtures. With time there was a decrease in the amount of permanent charge probably due to masking as humic material become adsorbed on mineral surfaces. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Nonylphenol polyethoxylates (NPEOs) are surfactants found ubiquitously in the environment due to widespread industrial and domestic use. Biodegradation of NPEOs produces nonylphenol (NP), an endocrine disruptor. Sewage sludge application introduces NPEOs and NP into soils, potentially leading to accumulation in soils and crops. We examined degradation of NP and nonyl phenol-12-ethoxylate (NP12EO) in four soils. NP12EO degraded rapidly (initial half time 0.3-5 days). Concentrations became undetectable within 70-90 days, with a small increase in NP concentrations after 30 days. NP initially degraded quickly (mean half time 11.5 days), but in three soils a recalcitrant fraction of 26-35% remained: the non-degrading fraction may consist of branched isomers, resistant to biodegradation. Uptake of NP by bean plants was also examined. Mean bioconcentration factors for shoots and seeds were 0.71 and 0.58, respectively. Removal of NP from the soil by plant uptake was negligible (0.01-0.02% of initial NP). Root concentrations were substantially higher than shoot and seed concentrations. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
An experiment was conducted to determine the effects of including cottonseed cake in rations for weaned growing pigs. Thirty-two Landrace x Large White pigs, weighing 20-24 kg, were included in four blocks formed on the basis of initial weight within sex in an otherwise completely randomized block design. The pigs were killed when they reached a live weight of 75.0 +/- 2.0 kg and the half careases were analysed into cuts and the weights of the organs were recorded. An estimate of the productivity of the pigs on each diet was calculated. Cottonseed cake reduced the voluntary feed intake (p < 0.001) and live weight gains (p < 0.001) and increased the heart, kidney and liver weights (p < 0.01). The pigs on the soya bean-based control diet took the shortest time to reach slaughter weight. The result was probably in part due to lysine deficiency and in part to the effect of free gossypol. It was found that it is at present cost-effective to include cottonseed cake in pig weaner grower diets up to 300 g/kg in Cameroon.
Resumo:
The effects of intercropping wheat with faba bean (Denmark, Germany, Italy and UK) and wheat with pea (France), in additive and replacement designs on grain nitrogen and sulphur concentrations were studied in field experiments in the 2002/03, 2003/04 and 2004/05 growing seasons. Intercropping wheat with grain legumes regularly increased the nitrogen concentration of the cereal grain, irrespective of design or location. Sulphur concentration of the cereal was also increased by intercropping, but less regularly and to a lesser extent compared with effects on nitrogen concentration. Nitrogen concentration (g/kg) in wheat additively intercropped with faba bean was increased by 8% across all sites (weighted for inverse of variance), but sulphur concentration was only increased by 4%, so N:S ratio was also increased by 4%. Intercropping wheat with grain legumes increased sodium dodecyl sulphate (SDS)-sedimentation volume. The effect of intercropping on wheat nitrogen concentration was greatest when intercropping had the most deleterious effect on wheat yield and the least deleterious effect on pulse yield. Over all sites and seasons, and irrespective of whether the design was additive or replacement, increases in crude protein concentration in the wheat of 10 g/kg by intercropping with faba bean were associated with 25-30% yield reduction of the wheat, compared with sole-cropped wheat. It was concluded that the increase in protein concentration of wheat grain in intercrops could be of economic benefit when selling wheat for breadmaking, but only if the bean crop was also marketed effectively.
Resumo:
The recent decline in the effectiveness of some azole fungicides in controlling the wheat pathogen Mycosphaerella graminicola has been associated with mutations in the CYP51 gene encoding the azole target, the eburicol 14 alpha-demethylase (CYP51), an essential enzyme of the ergosterol biosynthesis pathway. In this study, analysis of the sterol content of M. graminicola isolates carrying different variants of the CYP51 gene has revealed quantitative differences in sterol intermediates, particularly the CYP51 substrate eburicol. Together with CYP51 gene expression studies, these data suggest that mutations in the CYP51 gene impact on the activity of the CYP51 protein.
Resumo:
Our understanding of the evolution of microbial pathogens has been advanced by the discovery of "islands" of DNA that differ from core genomes and contain determinants of virulence [1, 2]. The acquisition of genomic islands (GIs) by horizontal gene transfer (HGT) is thought to have played a major role in microbial evolution. There are, however, few practical demonstrations of the acquisition of genes that control virulence, and, significantly, all have been achieved outside the animal or plant host. Loss of a GI from the bean pathogen Pseudomonas syringae pv. phaseolicola (Pph) is driven by exposure to the stress imposed by the plant's resistance response [3]. Here, we show that the complete episomal island, which carries pathogenicity genes including the effector avrPphB, transfers between strains of Pph by transformation in planta and inserts at a specific att site in the genome of the recipient. Our results show that the evolution of bacterial pathogens by HGT may be achieved via transformation, the simplest mechanism of DNA exchange. This process is activated by exposure to plant defenses, when the pathogen is in greatest need of acquiring new genetic traits to alleviate the antimicrobial stress imposed by plant innate immunity [4].
Resumo:
Emerging parasitoids of aphids encounter secondary plant chemistry from cues left by the mother parasitoid at oviposition and from the plant-feeding of the host aphid. In practice, however, it is secondary plant cheinistry oil the Surface of the aphid mummy which influences parasitoid olfactory behaviour. Offspring of Aphidius colemani reared oil Myzus persicae on artificial diet did no distinguish between the odours of bean and cabbage, but showed a clear preference for cabbage odour if sinigrin had been painted oil the back of the mummy. Similarly Aphidius rhopalosiphi reared on Metopolophium dirhodum on wheat preferred the odour of wheat plants grown near tomato plants to odour of wheat alone if the wheat plants oil which they had been reared had been exposed to the volatiles of nearby tomato plants. Aphidius rhopalosiphi reared on M dirhodum, and removed from the mummy before emergence, showed a preference for the odour of a different wheat cultivar if they had contacted a mummy from that cultivar, and similar results were obtained with A. colemani naturally emerged from M. persicae mummies. Aphidius colemani emerged from mummies oil one crucifer were allowed to contact in sequence (for 45 min each) mummies from two different crucifers. The mumber of attacks made in 10 min oil M. persicae was always significantly higher when aphids were feeding oil the same plant as the origin of the last MUMMY offered, or oil the second plant if aphids feeding on the third plant were not included. Chilling emerged A. colemani for 24 h at 5 degrees C appeared to erase the imprint of secondary plant chemistry, and they no longer showed host plant odour preferences in the olfactometer. When the parasitoids were chilled after three Successive mummy experiences, memory of the last experience appeared at least temporarily erased and preference was then shown for the chemistry of the second experience.
Resumo:
Although genome sequencing of microbial pathogens has shed light on the evolution of virulence, the drivers of the gain and loss of genes and of pathogenicity islands (gene clusters), which contribute to the emergence of new disease outbreaks, are unclear. Recent experiments with the bean pathogen Pseudomonas syringae pv. phaseolicola illustrate how exposure to resistance mechanisms acts as the driving force for genome reorganization. Here we argue that the antimicrobial conditions generated by host defences can accelerate the generation of genome rearrangements that provide selective advantages to the invading microbe. Similar exposure to environmental stress outside the host could also drive the horizontal gene transfer that has led to the evolution of pathogenicity towards both animals and plants.
Resumo:
Most studies aiming to determine the beneficial effect of ants on plants simply consider the effects of the presence or exclusion of ants on plant yield. This approach is often inadequate, however, as ants interact with both non-tended herbivores and tended Homoptera. Moreover, the interaction with these groups of organisms is dependent on ant density, and these functional relationships are likely to be non-linear. A model is presented here that segregates plant herbivores into two categories depending on the sign of their numerical response to ants (myrmecophiles increase with ants, non-tended herbivores decline). The changes in these two components of herbivores with increasing ant density and the resulting implications for ant-plant mutualisms are considered. It emerges that a wide range of ant densities needs to be considered as the interaction sign (mutualism or parasitism) and strength is likely to change with ant density. The model is used to interpret the results of an experimental study that varied levels of Aphis fabae infestation and Lasius niger ant attendance on Vicia faba bean plants. Increasing ant density consistently reduced plant fitness and thus, in this location, the interaction between the ants and the plant can be considered parasitic. In the Vicia faba system, these costs of ants are unlikely to be offset by other beneficial agents (e.g., parasitoids), which also visit extrafloral nectaries.