946 resultados para Vapour-liquid equilibrium
Resumo:
Free-standing monodomain liquid crystal elastomer samples are shown to have a complete memory of the orientational configuration at the time of cross-linking. This memory is demonstrated through samples in which the parent polymer system is first aligned in a magnetic field prior to cross-linking. These films show reversible nematic-isotropic phase transitions and x-ray scattering patterns characteristic of nematic phases. The liquid crystal elastomer films exhibit a remarkable memory effect, in that the sample may be held at temperatures well above the nematic-isotropic transition for extended periods ( > 2 weeks), but on cooling into the liquid crystal phase region, both the original director alignment and the degree of preferred orientation are recovered. It is demonstrated that these novel memory effects are equilibrium in nature. The origins of this phenomena in terms of coupling between the mesogenic side-chains and the polymer network are discussed.
Resumo:
The influence of cross-linking on the phase behaviour of a series of side-chain liquid crystalline elastomers has been studied. For samples cross-linked in the temperature range corresponding to the nematic phase, the phase transition was shifted compared to that observed when an identical sample was cross-linked in the isotropic phase. This shift represented a stabilisation of the nematic phase in the former case, in line with theoretical expectations. By utilising a novel, slow cross-linking method, which allows the polymer backbone to take up an equilibrium conformation prior to network formation, it proved possible to monitor the shifts in phase transition temperature as a function of the length of the methylene chain coupling the mesogenic units to the polymer backbone. The results obtained are related to the backbone anisotropy and indicate that the level of orientational order of the polymer in the nematic phase backbone increases with a reduction in the length of the coupling chain.
Resumo:
We have established the surface tension relaxation time in the liquid-solid interfaces of Lennard-Jones (LJ) liquids by means of direct measurements in molecular dynamics (MD) simulations. The main result is that the relaxation time is found to be almost independent of the molecular structures and viscosity of the liquids (at seventy-fold change) used in our study and lies in such a range that in slow hydrodynamic motion the interfaces are expected to be at equilibrium. The implications of our results for the modelling of dynamic wetting processes and interpretation of dynamic contact angle data are discussed.
Resumo:
We have calculated the equilibrium shape of the axially symmetric meniscus along which a spherical bubble contacts a flat liquid surface, by analytically integrating the Young-Laplace equation in the presence of gravity, in the limit of large Bond numbers. This method has the advantage that it provides semi-analytical expressions for key geometrical properties of the bubble in terms of the Bond number. Results are in good overall agreement with experimental data and are consistent with fully numerical (Surface Evolver) calculations. In particular, we are able to describe how the bubble shape changes from hemispherical, with a shallow flat bottom, to lenticular, with a deeper, curved bottom, as the Bond number is decreased.
Resumo:
We have employed UV-vis spectroscopy in order to investigate details of the solvation of six solvatochromic indicators, hereafter designated as ""probes"", namely, 2,6-diphenyl-4-(2,4,6-triphenylpyridinium-1-yl) phenolate (RB); 4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl] phenolate, MePM; 1-methylquinolinium-8-olate, QB; 2-bromo-4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl] phenolate, MePMBr, 2,6-dichloro-4-(2,4,6-triphenylpyridinium-1-yl) phenolate (WB); and 2,6-dibromo-4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl] phenolate, MePMBr,, respectively. These can be divided into three pairs, each includes two probes of similar pK(a) in water and different lipophilicity. Solvation has been studied in binary mixtures, BMs, of water, W, with 12 protic organic solvents, S, including mono- and bifunctional alcohols (2-alkoxyethanoles, unsaturated and chlorinated alcohols). Each medium was treated as a mixture of S, W, and a complex solvent, S-W, formed by hydrogen bonding. Values of lambda(max) (of the probe intramolecular charge transfer) were converted into empirical polarity scales, E(T)(probe) in kcal/mol, whose values were correlated with the effective mole fraction of water in the medium, chi w(effective). This correlation furnished three equilibrium constants for the exchange of solvents in the probe solvation shell; phi(W/S) (W substitutes S): phi(S-W/W) (S-W substitutes W), and phi(S-W/S) (S-W substitutes S), respectively. The values of these constants depend on the physicochemical properties of the probe and the medium. We tested, for the first time, the applicability of a new solvation free energy relationship: phi = constant + a alpha(BM) + b beta(BM) + s(pi*(BM) + d delta) + p log P(BM), where a, b, s, and p are regression coefficients alpha(BM), beta(BM), and pi*(BM) are solvatochromic parameters of the BM, delta is a correction term for pi*, and log P is an empirical scale of lipophilicity. Correlations were carried out with two-, three-, and four-medium descriptors. In all cases, three descriptors gave satisfactory correlations; use of four parameters gave only a marginal increase of the goodness of fit. For phi(W/S), the most important descriptor was found to be the lipophilicity of the medium; for phi(S-W/W) and phi(S-W/S), solvent basicity is either statistically relevant or is the most important descriptor. These responses are different from those of E(T)(probe) of many solvatochromic indicators in pure solvents, where the importance of solvent basicity is usually marginal, and can be neglected.
Resumo:
Raman spectra of polymer electrolytes based on poly(ethylene glycol) dimethyl ether (PEGdME) with LiClO(4), PEGdME/LiClO(4), and the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, PEGdME/[bmim]PF(6), are compared. Raman spectroscopy suggests stronger interactions in PEGdME/LiClO(4) than PEGdmE/[bmim]PF(6), thus corroborating previous results obtained by molecular dynamics simulations. Quantum Chemistry methods have been used to calculate vibrational frequencies and the equilibrium structure of segments of the polymer chain around the cation. A consistent picture has been obtained from Raman spectroscopy, density functional theory (DFT) calculations, and molecular dynamics simulations for these polymer electrolytes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A sensitive and fast-responding membrane-free amperometric gas sensor is described, consisting of a small filter paper foil soaked with a room temperature ionic liquid (RTIL), upon which three electrodes are screen printed with carbon ink, using a suitable mask. It takes advantage of the high electrical conductivity and negligible vapour pressure of RTILs as well as their easy immobilization into a porous and inexpensive supporting material such as paper. Moreover, thanks to a careful control of the preparation procedure, a very close contact between the RTIL and electrode material can be achieved so as to allow gaseous analytes to undergo charge transfer just as soon as they reach the three-phase sites where the electrode material, paper supported RTIL and gas phase meet. Thus, the adverse effect on recorded currents of slow steps such as analyte diffusion and dissolution in a solvent is avoided. To evaluate the performance of this device, it was used as a wall-jet amperometric detector for flow injection analysis of 1-butanethiol vapours, adopted as the model gaseous analyte, present in headspace samples in equilibrium with aqueous solutions at controlled concentrations. With this purpose, the RTIL soaked paper electrochemical detector (RTIL-PED) was assembled by using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide as the wicking RTIL and printing the working electrode with carbon ink doped with cobalt(II) phthalocyanine, to profit from its ability to electrocatalyze thiol oxidation. The results obtained were quite satisfactory (detection limit: 0.5 mu M; dynamic range: 2-200 mu M, both referring to solution concentrations; correlation coefficient: 0.998; repeatability: +/- 7% RSD; long-term stability: 9%), thus suggesting the possible use of this device for manifold applications.
Resumo:
Die Kapillarkraft entsteht durch die Bildung eines Meniskus zwischen zwei Festkörpen. In dieser Doktorarbeit wurden die Auswirkungen von elastischer Verformung und Flϋssigkeitadsorption auf die Kapillarkraft sowohl theoretisch als auch experimentell untersucht. Unter Verwendung eines Rasterkraftmikroskops wurde die Kapillarkraft zwischen eines Siliziumoxid Kolloids von 2 µm Radius und eine weiche Oberfläche wie n.a. Polydimethylsiloxan oder Polyisopren, unter normalen Umgebungsbedingungen sowie in variierende Ethanoldampfdrϋcken gemessen. Diese Ergebnisse wurden mit den Kapillarkräften verglichen, die auf einem harten Substrat (Silizium-Wafer) unter denselben Bedingungen gemessen wurden. Wir beobachteten eine monotone Abnahme der Kapillarkraft mit zunehmendem Ethanoldampfdruck (P) fϋr P/Psat > 0,2, wobei Psat der Sättigungsdampfdruck ist.rnUm die experimentellen Ergebnisse zu erklären, wurde ein zuvor entwickeltes analytisches Modell (Soft Matter 2010, 6, 3930) erweitert, um die Ethanoladsorption zu berϋcksichtigen. Dieses neue analytische Modell zeigte zwei verschiedene Abhängigkeiten der Kapillarkraft von P/Psat auf harten und weichen Oberflächen. Fϋr die harte Oberfläche des Siliziumwafers wird die Abhängigkeit der Kapillarkraft vom Dampfdruck vom Verhältnis der Dicke der adsorbierten Ethanolschicht zum Meniskusradius bestimmt. Auf weichen Polymeroberflächen hingegen hängt die Kapillarkraft von der Oberflächenverformung und des Laplace-Drucks innerhalb des Meniskus ab. Eine Abnahme der Kapillarkraft mit zunehmendem Ethanoldampfdruck hat demnach eine Abnahme des Laplace-Drucks mit zunehmendem Meniskusradius zur folge. rnDie analytischen Berechnungen, fϋr die eine Hertzsche Kontakt-deformation angenommen wurde, wurden mit Finit Element Methode Simulationen verglichen, welche die reale Deformation des elastischen Substrats in der Nähe des Meniskuses explizit berϋcksichtigen. Diese zusätzliche nach oben gerichtete oberflächenverformung im Bereich des Meniskus fϋhrt zu einer weiteren Erhöhung der Kapillarkraft, insbesondere fϋr weiche Oberflächen mit Elastizitätsmodulen < 100 MPa.rn
Resumo:
Conventional liquid liquid extraction (LLE) methods require large volumes of fluids to achieve the desired mass transfer of a solute, which is unsuitable for systems dealing with a low volume or high value product. An alternative to these methods is to scale down the process. Millifluidic devices share many of the benefits of microfluidic systems, including low fluid volumes, increased interfacial area-to-volume ratio, and predictability. A robust millifluidic device was created from acrylic, glass, and aluminum. The channel is lined with a hydrogel cured in the bottom half of the device channel. This hydrogel stabilizes co-current laminar flow of immiscible organic and aqueous phases. Mass transfer of the solute occurs across the interface of these contacting phases. Using a y-junction, an aqueous emulsion is created in an organic phase. The emulsion travels through a length of tubing and then enters the co-current laminar flow device, where the emulsion is broken and each phase can be collected separately. The inclusion of this emulsion formation and separation increases the contact area between the organic and aqueous phases, therefore increasing the area over which mass transfer can occur. Using this design, 95% extraction efficiency was obtained, where 100% is represented by equilibrium. By continuing to explore this LLE process, the process can be optimized and with better understanding may be more accurately modeled. This system has the potential to scale up to the industrial level and provide the efficient extraction required with low fluid volumes and a well-behaved system.
Resumo:
Pb17Li is today a reference breeder material in diverse fusion R&D programs worldwide. One of the main issues in these programs is the problem of liquid metals breeder blanket behavior. Structural material of the blanket should meet high requirements because of extreme operating conditions. Therefore the knowledge of eutectic properties like optimal composition, physical and thermodynamic behavior or diffusion coefficients of Tritium are extremely necessary for current designs. In particular, the knowledge of the function linking the tritium concentration dissolved in liquid materials with the tritium partial pressure at a liquid/gas interface in equilibrium, CT=f(PT), is of basic importance because it directly impacts all functional properties of a blanket determining: tritium inventory, tritium permeation rate and tritium extraction efficiency. Nowadays, understanding the structure and behavior of this compound is a real goal in fusion engineering and materials science. Simulations of liquids can provide much information to the community; not only supplementing experimental data, but providing new tests of theories and ideas, making specific predictions that require experimental tests, and ultimately helping to lead to the deeper understanding and better predictive behavior.
Resumo:
Liquids held by surface tension forces can bridge the gap between two solid bodies placed not too far apart from each other. The equilibrium conditions and stability criteria for static, cylindrical liquid bridges are well known. However, the behaviour of an unstable liquid bridge, regarding both its transition toward breaking and the resulting configuration, is a matter for discussion. The dynamical problem of axisymmetric rupture of a long liquid bridge anchored at two equal coaxial disks is treated in this paper through the adoption of one-dimensional theories which are widely used in capillary jet problems
Resumo:
A one-dimensional inviscid slice model has been used to study numerically the influence of axial microgravity on the breaking of liquid bridges having a volume close to that of gravitationless minimum volume stability limit. Equilibrium shapes and stability limits have been obtained as well as the dependence of the volume of the two drops formed after breaking on both the length and the volume of the liquid bridge. The breaking process has also been studied experimentally. Good agreement has been found between theory and experiment for neutrally buoyant systems
Resumo:
Presentation submitted to PSE Seminar, Chemical Engineering Department, Center for Advanced Process Design-making (CAPD), Carnegie Mellon University, Pittsburgh (USA), October 2012.
Resumo:
Presentation in the 11th European Symposium of the Working Party on Computer Aided Process Engineering, Kolding, Denmark, May 27-30, 2001.
Resumo:
Poster presented in the 11th Mediterranean Congress of Chemical Engineering, Barcelona, October 21-24, 2008.