928 resultados para Urban Development Action Grant Program (U.S.)
Resumo:
The vibration serviceability limit state is an important design consideration for two-way, suspended concrete floors that is not always well understood by many practicing structural engineers. Although the field of floor vibration has been extensively developed, at present there are no convenient design tools that deal with this problem. Results from this research have enabled the development of a much-needed, new method for assessing the vibration serviceability of flat, suspended concrete floors in buildings. This new method has been named, the Response Coefficient-Root Function (RCRF) method. Full-scale, laboratory tests have been conducted on a post-tensioned floor specimen at Queensland University of Technology’s structural laboratory. Special support brackets were fabricated to perform as frictionless, pinned connections at the corners of the specimen. A series of static and dynamic tests were performed in the laboratory to obtain basic material and dynamic properties of the specimen. Finite-element-models have been calibrated against data collected from laboratory experiments. Computational finite-element-analysis has been extended to investigate a variety of floor configurations. Field measurements of floors in existing buildings are in good agreement with computational studies. Results from this parametric investigation have led to the development of new approach for predicting the design frequencies and accelerations of flat, concrete floor structures. The RCRF method is convenient tool to assist structural engineers in the design for the vibration serviceability limit-state of in-situ concrete floor systems.
Resumo:
Countless factors affect the inner workings of a city, so in an attempt to gain an understanding of place and making sound decisions, planners need to utilize decision support systems (DSS) or planning support systems (PSS). PSS were originally developed as DSS in academia for experimental purposes, but like many other technologies, they became one of the most innovative technologies in parallel to rapid developments in software engineering as well as developments and advances in networks and hardware. Particularly, in the last decade, the awareness of PSS have been dramatically heightened with the increasing demand for a better, more reliable and furthermore a transparent decision-making process (Klosterman, Siebert, Hoque, Kim, & Parveen, 2003). Urban planning as an act has quite different perspective from the PSS point of view. The unique nature of planning requires that spatial dimension must be considered within the context of PSS. Additionally, the rapid changes in socio-economic structure cannot be easily monitored or controlled without an effective PSS.
Resumo:
Retirement village assets are different from traditional residential assets due to their operation in accordance with statutory legislation. Designed for independent living, retirement villages provide either detached or semi-detached residential dwellings with car parking and small private yards with community facilities providing a shared congregational area for village activities and socialising. In essence, the village operator provides the land and buildings to the residents who pay an amount on entry for the right of occupation. On departure from the units an agreed proportion of either the original purchase price or the sale price is paid to the outgoing resident. As ongoing levies are typically offset by ongoing operational expenses the market value of the operator's interest in the retirement village is therefore predominantly based upon the estimated future income from deferred management fees and capital gain upon roll-over receivable by the operator in accordance with the respective residency agreements. Given the lumpiness of these payments, there is general acceptance that the most appropriate approach to valuation is through discounted cash flow (DCF) analysis. There is however inconsistency between valuers across Australia in how they undertake their DCF analysis, leading to differences in reported values and subsequent confusion among users of valuation services. To give guidance to valuers and enhance confidence from users of valuation services this paper investigates the five major elements of DCF methodology, namely cash flows, escalation factors, holding period, terminal value and discount rate.
Resumo:
Urban water quality can be significantly impaired by the build-up of pollutants such as heavy metals and volatile organics on urban road surfaces due to vehicular traffic. Any control strategy for the mitigation of traffic related build-up of heavy metals and volatile organic pollutants should be based on the knowledge of their build-up processes. In the study discussed in this paper, the outcomes of a detailed experiment investigation into build-up processes of heavy metals and volatile organics are presented. It was found that traffic parameters such as average daily traffic, volume over capacity ratio and surface texture depth had similar strong correlations with the build-up of heavy metals and volatile organics. Multicriteria decision analyses revealed that the 1 - 74 um particulate fraction of total suspended solids (TSS) could be regarded as a surrogate indicator for particulate heavy metals in build-up and this same fraction of total organic carbon could be regarded as a surrogate indicator for particulate volatile organics build-up. In terms of pollutants affinity, TSS was found to be the predominant parameter for particulate heavy metals build-up and total dissolved solids was found to be the predominant parameter for he potential dissolved particulate fraction in heavy metals build-up. It was also found that land use did not play a significant role in the build-up of traffic generated heavy metals and volatile organics.
Resumo:
A model to predict the buildup of mainly traffic-generated volatile organic compounds or VOCs (toluene, ethylbenzene, ortho-xylene, meta-xylene, and para-xylene) on urban road surfaces is presented. The model required three traffic parameters, namely average daily traffic (ADT), volume to capacity ratio (V/C), and surface texture depth (STD), and two chemical parameters, namely total suspended solid (TSS) and total organic carbon (TOC), as predictor variables. Principal component analysis and two phase factor analysis were performed to characterize the model calibration parameters. Traffic congestion was found to be the underlying cause of traffic-related VOC buildup on urban roads. The model calibration was optimized using orthogonal experimental design. Partial least squares regression was used for model prediction. It was found that a better optimized orthogonal design could be achieved by including the latent factors of the data matrix into the design. The model performed fairly accurately for three different land uses as well as five different particle size fractions. The relative prediction errors were 10–40% for the different size fractions and 28–40% for the different land uses while the coefficients of variation of the predicted intersite VOC concentrations were in the range of 25–45% for the different size fractions. Considering the sizes of the data matrices, these coefficients of variation were within the acceptable interlaboratory range for analytes at ppb concentration levels.
Resumo:
This paper discusses the statistical analyses used to derive bridge live loads models for Hong Kong from a 10-year weigh-in-motion (WIM) data. The statistical concepts required and the terminologies adopted in the development of bridge live load models are introduced. This paper includes studies for representative vehicles from the large amount of WIM data in Hong Kong. Different load affecting parameters such as gross vehicle weights, axle weights, axle spacings, average daily number of trucks etc are first analyzed by various stochastic processes in order to obtain the mathematical distributions of these parameters. As a prerequisite to determine accurate bridge design loadings in Hong Kong, this study not only takes advantages of code formulation methods used internationally but also presents a new method for modelling collected WIM data using a statistical approach.
Resumo:
Research found that today’s organisations are increasingly aware of the potential barriers and perceived challenges associated with the successful delivery of change — including cultural and sub-cultural indifferences; financial constraints; restricted timelines; insufficient senior management support; fragmented key stakeholder commitment; and inadequate training. The delivery and application of Innovative Change (see glossary) within a construction industry organisation tends to require a certain level of ‘readiness’. This readiness is the combination of an organisation’s ability to part from undertakings that may be old, traditional, or inefficient; and then being able to readily adopt a procedure or initiative which is new, improved, or more efficient. Despite the construction industry’s awareness of the various threats and opportunities associated with the delivery of change, research found little attention is currently given to develop a ‘decision-making framework’ that comprises measurable elements (dynamics) that may assist in more accurately determining an organisation’s level of readiness or ability to deliver innovative change. To resolve this, an initial Background Literature Review in 2004 identified six such dynamics, those of Change, Innovation, Implementation, Culture, Leadership, and Training and Education, which were then hypothesised to be key components of a ‘Conceptual Decision-making Framework’ (CDF) for delivering innovative change within an organisation. To support this hypothesis, a second (more extensive) Literature Review was undertaken from late 2007 to mid 2009. A Delphi study was embarked on in June 2008, inviting fifteen building and construction industry members to form a panel and take part in a Delphi study. The selection criterion required panel members to have senior positions (manager and above) within a recognised field or occupation, and to have experience, understanding and / or knowledge in the process of delivering change within organisations. The final panel comprised nine representatives from private and public industry organisations and tertiary / research and development (R&D) universities. The Delphi study developed, distributed and collated two rounds of survey questionnaires over a four-month period, comprising open-ended and closed questions (referred to as factors). The first round of Delphi survey questionnaires were distributed to the panel in August 2008, asking them to rate the relevancy of the six hypothesised dynamics. In early September 2008, round-one responses were returned, analysed and documented. From this, an additional three dynamics were identified and confirmed by the panel as being highly relevant during the decision-making process when delivering innovative change within an organisation. The additional dynamics (‘Knowledge-sharing and Management’; ‘Business Process Requirements’; and ‘Life-cycle Costs’) were then added to the first six dynamics and used to populate the second (final) Delphi survey questionnaire. This was distributed to the same nine panel members in October 2008, this time asking them to rate the relevancy of all nine dynamics. In November 2008, round-two responses were returned, analysed, summarised and documented. Final results confirmed stability in responses and met Delphi study guidelines. The final contribution is twofold. Firstly, findings confirm all nine dynamics as key components of the proposed CDF for delivering innovative change within an organisation. Secondly, the future development and testing of an ‘Innovative Change Delivery Process’ (ICDP) is proposed, one that is underpinned by an ‘Innovative Change Decision-making Framework’ (ICDF), an ‘Innovative Change Delivery Analysis’ (ICDA) program, and an ‘Innovative Change Delivery Guide’ (ICDG).
Resumo:
A basic understanding of the relationships between rainfall intensity, duration of rainfall and the amount of suspended particles in stormwater runoff generated from road surfaces has been gained mainly from past washoff experiments using rainfall simulators. Simulated rainfall was generally applied at constant intensities, whereas rainfall temporal patterns during actual storms are typically highly variable. This paper discusses a rationale for the application of the constant-intensity washoff concepts to actual storm event runoff. The rationale is tested using suspended particle load data collected at a road site located in Toowoomba, Australia. Agreement between the washoff concepts and measured data is most consistent for intermediate-duration storms (duration <5 h and >1 h). Particle loads resulting from these storm events increase linearly with average rainfall intensity. Above a threshold intensity, there is evidence to suggest a constant or plateau particle load is reached. The inclusion of a peak discharge factor (maximum 6 min rainfall intensity) enhances the ability to predict particle loads.
Resumo:
Urban expansion continues to encroach on existing or newly implemented sewerage infrastructure. In this context, legislation and guidelines, both national and international, provide limited direction to the amenity allocation of appropriate buffering distances for land use planners and infrastructure providers. A review of published literature suggests the dominant influences include topography, wind speed and direction, temperature, humidity, existing land uses and vegetation profiles. A statistical criteria review of these factors against six years of sewerage odour complaint data was undertaken to ascertain their influence and a complaint severity hierarchy was established. These hierarchical results suggested the main criteria were: topographical location, elevation relative to the odour source and wind speed. Establishing a justifiable criterion for buffer zone allocations will assist in analytically determining a basis for buffer separations and will assist planners and infrastructure designers in assessing lower impact sewerage infrastructure locations.
Resumo:
An experimental laboratory investigation was carried out to assess the structural adequacy of a disused PHO Class Flat Bottom Rail Wagon (FRW) for a single lane low volume road bridge application as per the design provisions of the Australian Bridge Design Standard AS 5100(2004). The investigation also encompassed a review into the risk associated with the pre-existing damage in wagons incurred during their service life on rail. The main objective of the laboratory testing of the FRW was to physically measure its performance under the same applied traffic loading it would be required to resist as a road bridge deck. In order to achieve this a full width (5.2m) single lane, single span (approximately 10m), simply supported bridge would be required to be constructed and tested in a structural laboratory. However, the available clear spacing between the columns of the loading portal frame encountered within the laboratory was insufficient to accommodate the 5.2m wide bridge deck excluding clearance normally considered necessary in structural testing. Therefore, only half of the full scale bridge deck (single FRW of width 2.6m) was able to be accommodated and tested; with the continuity of the bridge deck in the lateral direction applied as boundary constraints along the full length of the FRW at six selected locations. This represents a novel approach not yet reported in the literature for bridge deck testing to the best of the knowledge of the author. The test was carried out under two loadings provided in AS 5100 (2004) – one stationary W80 wheel load and the second a moving axle load M1600. As the bridge investigated in the study is a single lane single span low volume road bridge, the risk of pre-existing damage and the expected high cycle fatigue failure potential was assessed as being minimal and hence the bridge deck was not tested structurally for fatigue/ fracture. The high axle load requirements have instead been focussed upon the investigation into the serviceability and ultimate limit state requirements. The testing regime adopted however involved extensive recording of strains and deflections at several critical locations of the FRW. Three locations of W80 point load and two locations of the M1600 Axle load were considered for the serviceability testing; the FRW was also tested under the ultimate load dictated by the M1600. The outcomes of the experimental investigation have demonstrated that the FRW is structurally adequate to resist the prescribed traffic loadings outlaid in AS 5100 (2004). As the loading was directly applied on to the FRW, the laboratory testing is assessed as being significantly conservative. The FRW bridge deck in the field would only resist the load transferred by the running platform, where, depending on the design, composite action might exist – thereby the share of the loading which needs to be resisted by the FRW would be smaller than the system tested in the lab. On this basis, a demonstration bridge is under construction at the time of writing this thesis and future research will involve field testing in order to assess its performance.
Resumo:
Urban expansion continues to encroach on once isolated sewerage infrastructure. In this context,legislation and guidelines provide limited direction to the amenity allocation of appropriate buffer distances for land use planners and infrastructure providers. Topography, wind speed and direction,temperature, humidity, existing land uses and vegetation profiles are some of the factors that require investigation in analytically determining a basis for buffer separations. This paper discusses the compilation and analysis of six years of Logan sewerage odour complaint data. Graphically,relationships between the complaints, topographical features and meteorological data are presented. Application of a buffer sizing process could assist planners and infrastructure designers alike, whilst automatically providing extra green spaces. Establishing a justifiable criterion for buffer zone allocations can only assist in promoting manageable growth for healthier and more sustainable communities.
Resumo:
This paper draws on a major study the authors conducted for the Australian Government in 2009. It focuses on the diffusion issues surrounding the uptake of sustainable building and construction products in Australia. Innovative sustainable products can minimise the environmental impact during construction, while maximising asset performance, durability and re-use. However, there are significant challenges faced by designers and clients in the selection of appropriate sustainable products in consideration of the integrated design solution, including overall energy efficiency, water conservation, maintenance and durability, low-impact use and consumption. The paper is a review of the current state of sustainable energy and material product innovations in Australia. It examines the system dynamics surrounding these innovations as well as the drivers and obstacles to their diffusion throughout the Australian construction industry. The case product types reviewed comprise: solar energy technology, small wind turbines, advanced concrete technology, and warm-mixed asphalt. The conclusions highlight the important role played by Australian governments in facilitating improved adoption rates. This applies to governments in their various roles, but particularly as clients/owners, regulators, and investors in education, training, research and development. In their role as clients/owners, the paper suggests that government can better facilitate innovation within the construction industry by adjusting specification policies to encourage the uptake of sustainable products. In the role as regulators, findings suggest governments should be encouraging the application of innovative finance options and positive end-user incentives to promote sustainable product uptake. Also, further education for project-based firms and the client/end users about the long-term financial and environmental benefits of innovative sustainable products is required. As more of the economy’s resources are diverted away from business-as-usual and into the use of sustainable products, some project-based firms may face short-term financial pain in re-shaping their businesses. Government policy initiatives can encourage firms make the necessary adjustments to improve innovative sustainable product diffusion throughout the industry.
Resumo:
Building on the recommendations of the Bradley Review (2008), the Australian Federal government intends to promote a higher level of penetration of tertiary qualification across the broader Australian community which is anticipated to result in increased levels of standardisation across university degrees. In the field of property, tertiary academic programs are very closely aligned to the needs of a range of built environment professions and there are well developed synergies between the relevant professional bodies and the educational institutions. The strong nexus between the academic and the professional content is characterised by ongoing industry accreditation which nominates a range of outcomes which the academic programs must maintain across a range of specified metrics. Commonly, the accrediting bodies focus on standard of minimum requirements especially in the area of specialised subject areas where they require property graduates to demonstrate appropriate learning and attitudes. In addition to nominated content fields, in every undergraduate degree program there are also many other subjects which provide a richer experience for the students beyond the merely professional. This study focuses on the nonspecialised knowledge field which varies across the universities offering property degree courses as every university has the freedom to pursue its own policy for these non-specialised units. With universities being sensitive to their role of in the appropriate socialisation of new entrants, first year units have been used as a vehicle to support students’ transition into university education and the final year units seek to support students’ integration into the professional world. Consequentially, many property programs have to squeeze their property-specific units to accommodate more generic units for both first year and final year units and the resulting diversity is a feature of the current range of property degrees across Australia which this research will investigate. The matrix of knowledge fields nominated by the Australian Property Institute for accreditation of degrees accepted for Certified Practising Valuer (CPV) educational requirement and the complementary requirements of the other major accrediting body (RICS) are used to classify and compare similarities and differences across property degrees in the light of the streamlining anticipated from the Bradley Review.
Resumo:
Purpose: The purpose of this paper is to identify changes in bank lending criteria due to the GFC and to explore the associated impacts on new housing supply in Queensland, Australia. Design/methodology/approach: This research involves a survey of each of Australia’s big four banks, as well as two prominent arrangers of development finance. Data on key lending criteria was collected: Pre GFC, during the GFC, and GFC recovery stage. Findings: The GFC has resulted in a retraction of funds available for residential development. The few institutions lending are filtering out only the best credit risks by way of constrictive loan covenants including: low loan to value ratios, high cash equity requirements, regional “no go” zones, and demonstrated borrower track record. The ability of developers to proceed with new housing developments is being constrained by their inability to obtain sufficient finance. Research limitations/implications: This research uses survey data, together with an understanding of the project finance process to extrapolate impacts on the residential development industry across Queensland. No regional or sub-market analysis is included. Future research will include subsequent surveys to track any loosening of credit policies over time and sub-market sector analysis. Practical implications: The inability to obtain project finance is identified as a key constraint to new housing supply. This research will inform policy makers and provide important quantitative evidence of the importance of availability of development finance in the housing supply chain. Social implications: Queensland is facing a supply shortfall, which if not corrected, may lead to upward pressure on house prices and falling housing affordability. Originality/value: There is very little academic research on development funding. This research is unique in linking bank lending criteria to new housing supply and demonstrating the impact on the development industry.
Resumo:
The uncertain and dynamic nature of International Construction Joint Venture (ICJV) performance is evolved with many critical factors which lead to make partner relationships more complex in respect of making decisions to maintain a cohesive environment. Addressing to the fact, a generic system dynamics performance model for ICJV is developed by integrating a number variables as to get an overall impact on performance of ICJV and to make effective decisions based on that. In order to formulate and validate the model both structurally and behaviourally, both qualitative and quantitative data are gathered by conducting intensive interviews from two ICJVs in Thailand. After conducting intensive simulations of model, three major problems are identified related to negative value gap, low productivity in construction and high rate of ineffective information sharing of both ICJVs. Several policies are suggested and integrated application of these policies provides a maximum improvement to performance of the ICJV.