928 resultados para Ultrasonic cleaning
Resumo:
Inscriptions: Verso: [stamped] Photograph by Freda Leinwand. [463 West Street, Studio 229G, New York, NY 10014].
Resumo:
Smart inks as a redox indicators of photocatalytic activity were applied on several paints with acrylic and silicate binder exposed to accelerated weathering test. The results show, that self-cleaning paints need some weathering to develop full photocatalytic activity. On the other side weathering may negatively influence the durability of the paint as shown for a silicate based exterior paint, which was significantly degraded after 350 h of weathering test. Smart inks proved to be suitable and rapid indicators of paint photoactivity. Resazurin ink is convenient only for unexposed paint with low photocatalytic activity while an Acid Violet 7 ink was appropriate for most of the paints, especially those that were weathered
Resumo:
Gas-to-liquid processes are generally used to convert natural gas or other gaseous hydrocarbons into liquid fuels via an intermediate syngas stream. This includes the production of liquid fuels from biomass-derived sources such as biogas. For example, the dry reforming of methane is done by reacting CH4 and CO2, the two main components of natural biogas, into more valuable products, i.e., CO and H2. Nickel containing perovskite type catalysts can promote this reaction, yielding good conversions and selectivities; however, they are prone to coke laydown under certain operating conditions. We investigated the addition of high oxygen mobility dopants such as CeO2, ZrO2, or YSZ to reduce carbon laydown, particularly using reaction conditions that normally result in rapid coking. While doping with YSZ, YDC, GDC, and SDC did not result in any improvement, we show that a Ni perovskite catalyst (Na0.5La0.5Ni0.3Al0.7O2.5) doped with 80.9 ZrO2 15.2 CeO2 gave the lowest amount of carbon formation at 800 °C and activity was maintained over the operating time.
Resumo:
Analysis of Responses to Public Consultation - DHSSPS Cleaning Services Policy in the Health and Social Care Sector
Resumo:
Action Plan regarding the Cleaning Services Policy in the Health and Social Care Sector
Resumo:
This policy sets out the Department’s commitment to maintaining and improving environmental cleanliness in Northern Ireland (NI). It has been developed with the aim that best management practice, staff training and continued monitoring of performance will lead to services being maintained and improved in a challenging financial climate. The detail of the policy is presented in the three sections which follow this executive summary. Section 1 – Introduction and Background. This section sets out the aims, objectives and scope of the policy. It also sets out the key principles which should apply to cleaning services. Section 2 - Developments since the launch of Cleanliness Matters Strategy in October 2005. This outlines events and progress since 2005 and indicates how these are shaping the proposed strategic direction. Section 3 - The Way Forward. This section sets out the areas for attention over the coming years.
Resumo:
The ultrasonic non-destructive testing of components may encounter considerable difficulties to interpret some inspections results mainly in anisotropic crystalline structures. A numerical method for the simulation of elastic wave propagation in homogeneous elastically anisotropic media, based on the general finite element approach, is used to help this interpretation. The successful modeling of elastic field associated with NDE is based on the generation of a realistic pulsed ultrasonic wave, which is launched from a piezoelectric transducer into the material under inspection. The values of elastic constants are great interest information that provide the application of equations analytical models, until small and medium complexity problems through programs of numerical analysis as finite elements and/or boundary elements. The aim of this work is the comparison between the results of numerical solution of an ultrasonic wave, which is obtained from transient excitation pulse that can be specified by either force or displacement variation across the aperture of the transducer, and the results obtained from a experiment that was realized in an aluminum block in the IEN Ultrasonic Laboratory. The wave propagation can be simulated using all the characteristics of the material used in the experiment evaluation associated to boundary conditions and from these results, the comparison can be made.
Resumo:
Ceramic materials have been widely used for various purposes in many different industries due to certain characteristics, such as high melting point and high resistance to corrosion. Concerning the areas of applications, automobile, aeronautics, naval and even nuclear, the characteristics of these materials should be strictly controlled. In the nuclear area, ceramics are of great importance once they are the nuclear fuel pellets and must have, among other features, a well controlled porosity due to mechanical strength and thermal conductivity required by the application. Generally, the techniques used to characterize nuclear fuel are destructive and require costly equipment and facilities. This paper aims to present a nondestructive technique for ceramic characterization using ultrasound. This technique differs from other ultrasonic techniques because it uses ultrasonic pulse in frequency domain instead of time domain, associating the characteristics of the analyzed material with its frequency spectrum. In the present work, 40 Alumina (Al2O3) ceramic pellets with porosities ranging from 5% to 37%, in absolute terms measured by Archimedes technique, were tested. It can be observed that the frequency spectrum of each pellet varies according to its respective porosity and microstructure, allowing a fast and non-destructive association of the same characteristics with the same spectra pellets.
Resumo:
The Ultrasound Laboratory of the Nuclear Engineering Institute (LABUS / IEN) has developed an ultrasonic technique to measure porosity in nuclear fuel pellets (UO2). By difficulties related to the handling of UO2 pellets, Alumina (Al2O3) pellets have been used in preliminary tests, until a methodology for tests with pellets of UO2 could be defined. In a previous work, in which a contact ultrasonic technique was used, good results were obtained to measure the porosity of Alumina pellets. In the current studies, it was found that the frequency spectrum of an ultrasonic pulse is very sensitive to the porosity of the medium in which it propagates. In order to define the most appropriate experimental apparatus for using immersion technique in future tests, two ultrasonic systems, available in LABUS, which permit to work with the ultrasonic pulse in the frequency domain were evaluated . One system was the Explorer II (Matec INSTRUMENTS) and the other the ultrasonic pulse generator Epoch 4 Plus (Panametrics) coupled with an oscilloscope TDS 3032B (Tektronix). For this evaluation, several frequency spectra were obtained with the two equipment, by the passage of the ultrasonic wave in the same pellet of Alumina. This procedure was performed on four different days, on each day 12 ultrasonic signals were acquired, one signal every 10 minutes, with each apparatus. The results were compared and analyzed as regard the repeatability of the frequency spectra obtained.
Resumo:
The use of polymeric membranes is extremely important in several industries such as nuclear, biotechnology, chemical and pharmaceutical. In the nuclear area, for instance, systems based on membrane separation technologies are currently being used in the treatment of radioactive liquid effluent, and new technologies using membranes are being developed at a great rate. The knowledge of the physical characteristics of these membranes, such as, pore size and the pore size distribution, is very important to the membranes separation processes. Only after these characteristics are known is it possible to determine the type and to choose a particular membrane for a specific application. In this work, two ultrasonic non destructive techniques were used to determine the porosity of membranes: pulse echo and transmission. A 25 MHz immersion transducer was used. Ultrasonic signals were acquired, for both techniques, after the ultrasonic waves passed through a microfiltration polymeric membrane of pore size of 0.45 μm and thickness of 180 μm. After the emitted ultrasonic signal crossed the membrane, the received signal brought several information on the influence of the membrane porosity in the standard signal of the ultrasonic wave. The ultrasonic signals were acquired in the time domain and changed to the frequency domain by application of the Fourier Fast Transform (FFT), thus generating the material frequency spectrum. For the pulse echo technique, the ultrasonic spectrum frequency changed after the ultrasonic wave crossed the membrane. With the transmission technique there was only a displacement of the ultrasonic signal at the time domain.
Resumo:
Introduction: The raising frequency of cancer diseases is leading to a widespread application of antineoplastic drugs, thus increasing the probability of workplace surfaces contamination. Most of these drugs are classified by the International Agency for Research on Cancer as known or suspected human carcinogens. Skin absorption is the main route for antineoplastic drugs exposure in occupational settings, therefore cleaning protocols have paramount influence in surfaces contamination and, consequently, in exposure. The aim of this study was to assess surfaces contamination in a Portuguese chemotherapy unit before and during drug administration, in both preparation and administration facilities. Methods: Samples were collected by wipe-sampling from potentially contaminated surfaces selected by previous protocol observation. Samples were analyzed by HPLCDAD. Cyclophosphamide (CP), 5-fluorouracil (5FU), and paclitaxel (PTX) were used as surrogate markers for surfaces contamination for all cytotoxic drugs. Results: From the 34 samples collected before any preparation and administration activities, 41.2% were contaminated with 5-FU (4.0-84.7 ng/cm2) and 23.5% of the samples were contaminated with CP (19.8-139.6 μg/cm2). Only 2 samples presented contamination by PTX (5.9%) with a maximum value of 3.7 ng/cm2. Of the 37 samples collected during preparation and administration of antineoplastic drugs, 48.7% were contaminated with 5-FU (1.9-88.7 ng/cm2) and 24.3% with CP (12.0-93.9 μg/cm2). None of the samples showed contamination with PTX. Discussion: Data showed differences in contamination levels before and after the handling of antineoplastic drugs in preparation and in administration settings. These results point out the importance of cleaning procedures. This is well in accordance to previous studies that showed how the type of cleaning procedures and products used can be determinant for surfaces decontamination.
Resumo:
Introduction - Some studies point to human activities as one of the responsible for most bacterial concentration. However, there is no information regarding bacteria contamination in hotel room during the cleaning activity. Aim of the study - This study aims to assess and characterize the occupational exposure of bacterial contamination in hotel rooms, more precisely in a room with carpet floor and another room without carpet, during the cheaning activity.
Resumo:
Background: The majority of studies investigated ambient particles, although in most industrialized countries people spend most of their time indoors and significant emissions of fine and ultrafine particles leading to human exposure are caused by various indoor tasks, including cleaning tasks. Objective: To characterize the occupational exposure to particles during cleaning of hotel's rooms. Methodology: Measurements of mass concentration and particle number concentration were performed before and during cleaning tasks in two rooms with different floor types (wood and carpet) with the equipment Lighthouse, model 3016 IAQ. Results: Considering mass concentration, particles with higher were responsable for higher leves of contamination, particularly PM5.0 and PM10.0. However, considering the particle number concentration, the smaller particle size obtained the higher values. Conclusion: It was observed higher number of particles of the smaller size in all tasks, which is associated with worse health effects. It was observed that the room with wood in the floor has lower values when compared to the room with carpet. The tasks with greater exposure were the 'vacuuming' and 'clean up powder'.
Resumo:
O principal objetivo do tratamento endodôntico não cirúrgico reside na limpeza e desinfeção do sistema tridimensional de canais radiculares, removendo os microrganismos existentes e conseguindo restituir a função do dente, em vez de o extrair. É fácil compreender que o insucesso deste tratamento deve-se, essencialmente, à sobrevivência dos microrganismos nos canais radiculares. Por isso, a irrigação e a desinfeção são essenciais para alcançar o sucesso do tratamento. Devido à morfologia do canal e à incapacidade de determinar a localização exata do ápice, as soluções irrigadoras têm de alcançar as ramificações dos canais radiculares e outras áreas inacessíveis à instrumentação. Após a pesquisa efetuada, concluiu-se que o irrigante mais utilizado universalmente é o hipoclorito de sódio. Para além disso, o hipoclorito de sódio, o EDTA e o ácido cítrico ajudam na instrumentação e no alargamento do canal, devido à desmineralização dentinária que provocam. Já a clorexidina, apesar de não provocar qualquer desmineralização, ao ser associada ao hipoclorito de sódio, origina um precipitado que vai interferir no selamento dos canais radiculares. Assim, com o presente trabalho, pretende-se realizar uma revisão bibliográfica sobre os diversos irrigantes e sistemas auxiliares de irrigação, que se encontram associados à desinfeção endodôntica.
Resumo:
During the refractory period that follows ejaculation, the male rat regularly emits 22-kilohertz vocalizations. These cease after about three-fourths of the total period has elapsed, and this corresponds to an "absolute refractory period" during which the male cannot spontaneously initiate copulation. Similar 22-kilohertz vocalizations occur in other social contexts, and in general they appear to be desist-contact signals.